Skip to main content

Advertisement

Log in

Mechanistic interrogation of combination bevacizumab/dual PI3K/mTOR inhibitor response in glioblastoma implementing novel MR and PET imaging biomarkers

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Resistance to bevacizumab (BEV) in glioblastoma is believed to occur via activation of molecular networks including the mTOR/PI3K pathway. Using an MR/PET molecular imaging biomarker approach, we investigated the response to combining BEV with the mTOR/PI3K inhibitor BEZ235.

Methods

Tumours were established by orthotopically implanting U87MG-luc2 cells in mice. Animals were treated with BEZ235 and/or BEV, and imaged using diffusion-weighted-MRI, T2-weighted and T2*-weighted before and after administration of superparamagnetic iron oxide contrast agent. Maps for changes in relaxation rates (ΔR2, ΔR2* and apparent diffusion coefficient) were calculated. Vessel size index and microvessel density index were derived. 3′-Deoxy-3′-[18F]fluorothymidine ([18F]FLT) PET and O-(2-[18F]fluoroethyl)-l-tyrosine ([18F]FET) PET were further performed and tumour endothelium/proliferation markers assessed by immunohistochemistry.

Results

Treatment with BEV resulted in a pronounced decrease in tumour volume (T2-weighted MRI). No additive effect on tumour volume was observed with the BEV/BEZ235 combination compared with BEV monotherapy. The Ki67 proliferation index and [18F]FLT uptake studies were used to support the observations. Using ΔR2* and ΔR2 values, respectively, the BEV/BEZ235 combination significantly reduced tumour microvessel volume in comparison to BEV alone. Decreased microvessel density index was further observed in animals treated with the combination, supported by von Willebrand factor (vWF) immunohistochemistry. [18F]FET uptake was decreased following treatment with BEV alone, but was not further reduced following treatment with the combination. vWF immunohistochemistry analysis showed that the mean tumour vessel size was increased in all cohorts.

Conclusion

Assessing MR imaging biomarker parameters together with [18F]FET and [18F]FLT PET provided information on mechanism of action of the drug combination and clues as to potential clinical responses. Following translation to clinical use, treatment with a BEV/BEZ235 combination could reduce peritumoral oedema obviating the requirement for steroids. The use of hypothesis-driven molecular imaging studies facilitates the preclinical evaluation of drug response. Studies of this kind may more accurately predict the clinical potential of the BEV/BEZ235 combination regimen as a novel therapeutic approach in oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96. doi:10.1056/NEJMoa043330.

    Article  CAS  PubMed  Google Scholar 

  2. Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol. 2009;27:4733–40. doi:10.1200/JCO.2008.19.8721.

    Article  CAS  PubMed  Google Scholar 

  3. ClinicalTrials.gov. A study of Avastin® (BEVacizumab) in combination with temozolomide and radiotherapy in patients with newly diagnosed glioblastoma. http://clinicaltrials.gov/show/NCT00943826.

  4. Zuniga RM, Torcuator R, Jain R, Anderson J, Doyle T, Ellika S, et al. Efficacy, safety and patterns of response and recurrence in patients with recurrent high-grade gliomas treated with bevacizumab plus irinotecan. J Neurooncol. 2009;91:329–36. doi:10.1007/s11060-008-9718-y.

    Article  CAS  PubMed  Google Scholar 

  5. de Groot JF, Fuller G, Kumar AJ, Piao Y, Eterovic K, Ji Y, et al. Tumor invasion after treatment of glioblastoma with bevacizumab: radiographic and pathologic correlation in humans and mice. Neuro Oncol. 2010;12:233–42. doi:10.1093/neuonc/nop027.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lu KV, Chang JP, Parachoniak CA, Pandika MM, Aghi MK, Meyronet D, et al. VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell. 2012;22:21–35. doi:10.1016/j.ccr.2012.05.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Keunen O, Johansson M, Oudin A, Sanzey M, Rahim SA, Fack F, et al. Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci U S A. 2011;108:3749–54. doi:10.1073/pnas.1014480108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wong AJ, Ruppert JM, Bigner SH, Grzeschik CH, Humphrey PA, Bigner DS, et al. Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc Natl Acad Sci U S A. 1992;89:2965–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu TJ, Koul D, LaFortune T, Tiao N, Shen RJ, Maira SM, et al. NVP-BEZ235, a novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor, elicits multifaceted antitumor activities in human gliomas. Mol Cancer Ther. 2009;8:2204–10. doi:10.1158/1535-7163.MCT-09-0160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. ClinicalTrials.gov. Safety study of BEZ235 with everolimus in subjects with advanced solid tumors. https://clinicaltrials.gov/ct2/show/record/NCT01508104.

  11. Roulin D, Waselle L, Dormond-Meuwly A, Dufour M, Demartines N, Dormond O. Targeting renal cell carcinoma with NVP-BEZ235, a dual PI3K/mTOR inhibitor, in combination with sorafenib. Mol Cancer. 2011;10:90. doi:10.1186/1476-4598-10-90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ullrich RT, Jikeli JF, Diedenhofen M, Bohm-Sturm P, Unruh M, Vollmar S, et al. In-vivo visualization of tumor microvessel density and response to anti-angiogenic treatment by high resolution MRI in mice. PLoS One. 2011;6:e19592. doi:10.1371/journal.pone.0019592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Viel T, Boehm-Sturm P, Rapic S, Monfared P, Neumaier B, Hoehn M, et al. Non-invasive imaging of glioma vessel size and densities in correlation with tumour cell proliferation by small animal PET and MRI. Eur J Nucl Med Mol Imaging. 2013;40:1595–606. doi:10.1007/s00259-013-2464-1.

    Article  PubMed  Google Scholar 

  14. Schafers KP, Reader AJ, Kriens M, Knoess C, Schober O, Schafers M. Performance evaluation of the 32-module quadHIDAC small-animal PET scanner. J Nucl Med. 2005;46:996–1004.

    PubMed  Google Scholar 

  15. Vollmar S, Cizek J, Sue M, Klein J, Jacobs AH, Herholz K. VINCI - “Volume Imaging in Neurological Research, Co-Registration and ROIs included. Göttingen: Gesellschaft für wissenschaftliche Datenverarbeitung; 2003.

    Google Scholar 

  16. Thaker NG, Pollack IF. Molecularly targeted therapies for malignant glioma: rationale for combinatorial strategies. Expert Rev Neurother. 2009;9:1815–36. doi:10.1586/ern.09.116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sathornsumetee S, Reardon DA, Desjardins A, Quinn JA, Vredenburgh JJ, Rich JN. Molecularly targeted therapy for malignant glioma. Cancer. 2007;110:13–24. doi:10.1002/cncr.22741.

    Article  PubMed  Google Scholar 

  18. Jalali S, Chung C, Foltz W, Burrell K, Singh S, Hill R, et al. MRI biomarkers identify the differential response of glioblastoma multiforme to anti-angiogenic therapy. Neuro Oncol. 2014;16:868–79. doi:10.1093/neuonc/nou040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lavini C, Verhoeff JJ, Majoie CB, Stalpers LJ, Richel DJ, Maas M. Model-based, semiquantitative and time intensity curve shape analysis of dynamic contrast-enhanced MRI: a comparison in patients undergoing antiangiogenic treatment for recurrent glioma. J Magn Reson Imaging. 2011;34:1303–12. doi:10.1002/jmri.22742.

    Article  PubMed  Google Scholar 

  20. Cabrera AR, Cuneo KC, Desjardins A, Sampson JH, McSherry F, Herndon 2nd JE, et al. Concurrent stereotactic radiosurgery and bevacizumab in recurrent malignant gliomas: a prospective trial. Int J Radiat Oncol Biol Phys. 2013;86:873–9. doi:10.1016/j.ijrobp.2013.04.029.

    Article  CAS  PubMed  Google Scholar 

  21. Kording F, Weidensteiner C, Zwick S, Osterberg N, Weyerbrock A, Staszewski O, et al. Simultaneous assessment of vessel size index, relative blood volume, and vessel permeability in a mouse brain tumor model using a combined spin echo gradient echo echo-planar imaging sequence and viable tumor analysis. J Magn Reson Imaging. 2014;40:1310–8. doi:10.1002/jmri.24513.

    Article  PubMed  Google Scholar 

  22. Dennie J, Mandeville JB, Boxerman JL, Packard SD, Rosen BR, Weisskoff RM. NMR imaging of changes in vascular morphology due to tumor angiogenesis. Magn Reson Med. 1998;40:793–9.

    Article  CAS  PubMed  Google Scholar 

  23. Lemasson B, Valable S, Farion R, Krainik A, Remy C, Barbier EL. In vivo imaging of vessel diameter, size, and density: a comparative study between MRI and histology. Magn Reson Med. 2013;69:18–26. doi:10.1002/mrm.24218.

    Article  PubMed  Google Scholar 

  24. Pannetier N, Lemasson B, Christen T, Tachrount M, Tropres I, Farion R, et al. Vessel size index measurements in a rat model of glioma: comparison of the dynamic (Gd) and steady-state (iron-oxide) susceptibility contrast MRI approaches. NMR Biomed. 2012;25:218–26. doi:10.1002/nbm.1734.

    Article  CAS  PubMed  Google Scholar 

  25. Pope WB, Lai A, Nghiemphu P, Mischel P, Cloughesy TF. MRI in patients with high-grade gliomas treated with bevacizumab and chemotherapy. Neurology. 2006;66:1258–60. doi:10.1212/01.wnl.0000208958.29600.87.

    Article  CAS  PubMed  Google Scholar 

  26. Fuereder T, Wanek T, Pflegerl P, Jaeger-Lansky A, Hoeflmayer D, Strommer S, et al. Gastric cancer growth control by BEZ235 in vivo does not correlate with PI3K/mTOR target inhibition but with [18F]FLT uptake. Clin Cancer Res. 2011;17:5322–32. doi:10.1158/1078-0432.CCR-10-1659.

    Article  CAS  PubMed  Google Scholar 

  27. Graf N, Li Z, Herrmann K, Weh D, Aichler M, Slawska J, et al. Positron emission tomographic monitoring of dual phosphatidylinositol-3-kinase and mTOR inhibition in anaplastic large cell lymphoma. Onco Targets Ther. 2014;7:789–98. doi:10.2147/OTT.S59314.

    PubMed  PubMed Central  Google Scholar 

  28. Harris RJ, Cloughesy TF, Pope WB, Nghiemphu PL, Lai A, Zaw T, et al. 18F-FDOPA and 18F-FLT positron emission tomography parametric response maps predict response in recurrent malignant gliomas treated with bevacizumab. Neuro Oncol. 2012;14:1079–89. doi:10.1093/neuonc/nos141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schmainda KM, Prah M, Connelly J, Rand SD, Hoffman RG, Mueller W, et al. Dynamic-susceptibility contrast agent MRI measures of relative cerebral blood volume predict response to bevacizumab in recurrent high-grade glioma. Neuro Oncol. 2014;16:880–8. doi:10.1093/neuonc/not216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nagpal S, Harsh G, Recht L. Bevacizumab improves quality of life in patients with recurrent glioblastoma. Chemother Res Pract. 2011;2011:602812. doi:10.1155/2011/602812.

    PubMed  PubMed Central  Google Scholar 

  31. Okubo S, Zhen HN, Kawai N, Nishiyama Y, Haba R, Tamiya T. Correlation of L-methyl-11C-methionine (MET) uptake with L-type amino acid transporter 1 in human gliomas. J Neurooncol. 2010;99:217–25. doi:10.1007/s11060-010-0117-9.

    Article  CAS  PubMed  Google Scholar 

  32. Galldiks N, Rapp M, Stoffels G, Fink GR, Shah NJ, Coenen HH, et al. Response assessment of bevacizumab in patients with recurrent malignant glioma using [18F]fluoroethyl-L-tyrosine PET in comparison to MRI. Eur J Nucl Med Mol Imaging. 2013;40:22–33. doi:10.1007/s00259-012-2251-4.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annette T. Byrne.

Ethics declarations

Funding

This study was funded by the Euro Bio-Imaging Project and Beaumont Hospital Cancer Research & Development Trust. P.O.H. obtained an award from The Company of Biologists and the Interdisciplinary Centre for Clinical Research Münster (PIX). A.T.B. and J.H.M.P. are funded under the European Union’s Seventh Framework Programme for research, technological development, and demonstration under grant agreement 278981 (AngioPredict). C.F. received funding from the German Research Foundation under grant SFB1009 Z02.

Conflicts of interest

None.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not describe any studies with human participants performed by any of the authors.

Additional information

Philip J. O’Halloran, Thomas Viel and David W. Murray contributed equally to this work.

Andreas H. Jacobs and Annette T. Byrne are joint senior authors.

Electronic supplementary material

Below are the links to the electronic supplementary material.

Supplementary Table 1

(PDF 104 kb)

Supplementary Table 2

(PDF 125 kb)

Supplementary Figure 1

Correlation between imaging and IHC data. a Correlation between MDI and microvessel density as determined by vWF staining. b Correlation between [18F]FET uptake and microvessel density as determined by vWF staining. c Correlation between MDI and [18F]FET uptake. d Correlation between [18F]FLT uptake and Ki67 index (PDF 143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Halloran, P.J., Viel, T., Murray, D.W. et al. Mechanistic interrogation of combination bevacizumab/dual PI3K/mTOR inhibitor response in glioblastoma implementing novel MR and PET imaging biomarkers. Eur J Nucl Med Mol Imaging 43, 1673–1683 (2016). https://doi.org/10.1007/s00259-016-3343-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-016-3343-3

Keywords

Navigation