Skip to main content

Advertisement

Log in

Visual and statistical analysis of 18F-FDG PET in primary progressive aphasia

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Diagnosing progressive primary aphasia (PPA) and its variants is of great clinical importance, and fluorodeoxyglucose (FDG) positron emission tomography (PET) may be a useful diagnostic technique. The purpose of this study was to evaluate interobserver variability in the interpretation of FDG PET images in PPA as well as the diagnostic sensitivity and specificity of the technique. We also aimed to compare visual and statistical analyses of these images.

Methods

There were 10 raters who analysed 44 FDG PET scans from 33 PPA patients and 11 controls. Five raters analysed the images visually, while the other five used maps created using Statistical Parametric Mapping software. Two spatial normalization procedures were performed: global mean normalization and cerebellar normalization. Clinical diagnosis was considered the gold standard.

Results

Inter-rater concordance was moderate for visual analysis (Fleiss’ kappa 0.568) and substantial for statistical analysis (kappa 0.756–0.881). Agreement was good for all three variants of PPA except for the nonfluent/agrammatic variant studied with visual analysis. The sensitivity and specificity of each rater’s diagnosis of PPA was high, averaging 87.8 and 89.9 % for visual analysis and 96.9 and 90.9 % for statistical analysis using global mean normalization, respectively. In cerebellar normalization, sensitivity was 88.9 % and specificity 100 %.

Conclusion

FDG PET demonstrated high diagnostic accuracy for the diagnosis of PPA and its variants. Inter-rater concordance was higher for statistical analysis, especially for the nonfluent/agrammatic variant. These data support the use of FDG PET to evaluate patients with PPA and show that statistical analysis methods are particularly useful for identifying the nonfluent/agrammatic variant of PPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mesulam MM. Primary progressive aphasia and the language network: the 2013 H. Houston Merrit Lecture. Neurology 2013;81:456–62.

    Article  PubMed  Google Scholar 

  2. Matías-Guiu JA, García-Ramos R. Primary progressive aphasia: from syndrome to disease. Neurologia 2013;28:366–74.

    Article  PubMed  Google Scholar 

  3. Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, et al. Classification of primary progressive aphasia and its variants. Neurology 2011;76:1006–14.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Herholz K, Carter SF, Jones M. Positron emission tomography imaging in dementia. Br J Radiol 2007;80(2):S160–7.

    Article  PubMed  Google Scholar 

  5. Bohnen NI, Djang DSW, Herholz K, Anzai Y, Minoshima S. Effectiveness and safety of 18F-FDG PET in the evaluation of dementia: a review of the recent literature. J Nucl Med 2012;53:59–71.

    Article  CAS  PubMed  Google Scholar 

  6. Fernández-Matarrubia M, Matias-Guiu JA, Moreno-Ramos T, Matias-Guiu J. Biomarkers: a new approach to behavioural variant frontotemporal dementia. Neurologia 2013. doi:10.1016/j.nrl.2013.03.002.

    Google Scholar 

  7. Gorno-Tempini ML, Dronkers NF, Rankin KP, Ogar JM, Phengrasamy L, Rosen HJ, et al. Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol 2004;55:335–56.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Josephs KA, Duffy JR, Fosset TR, Strand EA, Claassen DO, Whitewell JL, et al. Fluorodeoxyglucose F18 positron emission tomography in progressive apraxia of speech and primary progressive aphasia. Arch Neurol 2010;67:596–605.

    Article  PubMed  Google Scholar 

  9. Clark DG, Charuvastra A, Miller BL, Shapira JS, Mendez MF. Fluent versus nonfluent primary progressive aphasia: a comparison of clinical and functional neuroimaging features. Brain Lang 2005;94:54–60.

    Article  PubMed  Google Scholar 

  10. Perneczky R, Diehl-Schmid J, Pohl C, Drzezga A, Kurz A. Non-fluent progressive aphasia: cerebral metabolic patterns and brain reserve. Brain Res 2007;1133:178–85.

    Article  CAS  PubMed  Google Scholar 

  11. Rabinovici GD, Jagust WJ, Furst AJ, Ogar JM, Racine CA, Mormino EC, et al. Abeta amyloid and glucose metabolism in the three variants of primary progressive aphasia. Ann Neurol 2008;64:388–401.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Panegyres PK, McCarthy M, Campbell A, Lenzo N, Fallon M, Thompson J. Correlative studies of structural and functional imaging in primary progressive aphasia. Am J Alzheimers Dis Other Demen 2008;23:184–91.

    Article  CAS  PubMed  Google Scholar 

  13. Rogalski E, Cobia D, Harrison TM, Wieneke C, Weintraub S, Mesulam MM. Progression of language decline and cortical atrophy in subtypes of primary progressive aphasia. Neurology 2011;76:1804–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Lehman VT, Carter RE, Claasen DO, Murphy RC, Lowe V, Petersen RC, et al. Visual assessment versus quantitative three-dimensional sterotactic surface projection fluorodeoxyglucose positron emission tomography for detection of mild cognitive impairment and Alzheimer disease. Clin Nucl Med 2012;37:721–6.

    Article  PubMed  Google Scholar 

  15. Yamame T, Ikari Y, Nishio T, Ishii K, Ishii K, Kato T, et al. Visual-statistical interpretation of (18)F-FDG-PET images for characteristic Alzheimer patterns in a multicenter study: inter-rater concordance and relationship to automated quantitative evaluation. AJNR Am J Neuroradiol 2014;35:244–9.

    Article  Google Scholar 

  16. Ng S, Villemagne VL, Berlangieri S, Lee ST, Cherk M, Gong SJ, et al. Visual assessment versus quantitative assessment of 11C-PIB PET and 18F-FDG PET for detection of Alzheimer’s disease. J Nucl Med 2007;48:547–52.

    Article  CAS  PubMed  Google Scholar 

  17. Arbizu J, Prieto E, Martínez-Lage P, Martí-Climent JM, García-Granero M, Lamet I, et al. Automated analysis of FDG PET as a tool for single-subject probabilistic prediction and detection of Alzheimer’s disease and dementia. Eur J Nucl Med Mol Imaging 2013;40:1394–405.

    Article  PubMed  Google Scholar 

  18. Eckert T, Barnes A, Dhawan V, Frucht S, Gordon MF, Feigin AS, et al. FDG PET in the differential diagnosis of parkinsonian disorders. Neuroimage 2005;26:912–21.

    Article  PubMed  Google Scholar 

  19. Ashburner J, Friston JK. Voxel-based morphometry—the methods. Neuroimage 2000;11:805–21.

    Article  CAS  PubMed  Google Scholar 

  20. Dukart J, Mueller K, Horstmann A, Vogt B, Frisch S, Barthel H, et al. Differential effects of global and cerebellar normalization on detection and differentiation of dementia in FDG-PET studies. Neuroimage 2010;49:1490–5.

    Article  PubMed  Google Scholar 

  21. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002;15:273–89.

    Article  CAS  PubMed  Google Scholar 

  22. Wicklund MR, Duffy JR, Strand EA, Machulda MM, Whitwell JL, Josephs KA. Quantitative application of the primary progressive aphasia consensus criteria. Neurology 2014;82:1119–26.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Sajjadi SA, Patterson K, Arnold RJ, Watson PC, Nestor PJ. Primary progressive aphasia: a tale of two syndromes and the rest. Neurology 2012;78:1670–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977;33:159–74.

    Article  CAS  PubMed  Google Scholar 

  25. Burdette JH, Minoshima S, Vander Borght T, Tran DD, Kuhl DE. Alzheimer disease: improved visual interpretation of PET images using three-dimensional stereotaxic surface projections. Radiology 1996;198:837–43.

    Article  CAS  PubMed  Google Scholar 

  26. Womack KB, Diaz-Arrastia R, Aizenstein HJ, Arnold SE, Barbas NR, Boeve BF, et al. Temporoparietal hypometabolism in frontotemporal lobar degeneration and associated imaging diagnostic errors. Arch Neurol 2011;68:329–7.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Silverman DH. PET in the evaluation of Alzheimer’s disease and related disorders. New York: Springer; 2009.

    Book  Google Scholar 

  28. Le Rhun E, Richard F, Pasquier F. Natural history of primary progressive aphasia. Neurology 2005;65:887–91.

    Article  PubMed  Google Scholar 

  29. Yakushev I, Landvogt C, Buchholz HG, Fellgiebel A, Hammers A, Scheurich A, et al. Choice of reference area in studies of Alzheimer’s disease using positron emission tomography with fluorodeoxyglucose-F18. Psychiatry Res 2008;164:143–53.

    Article  PubMed  Google Scholar 

  30. Yakushev I, Hammers A, Fellgiebel A, Schmidtmann I, Scheurich A, Buchholz HG, et al. SPM-based count normalization provides excellent discrimination of mild Alzheimer’s disease and amnestic mild cognitive impairment from healthy aging. Neuroimage 2009;44:43–50.

    Article  PubMed  Google Scholar 

  31. Dukart J, Perneczky R, Förster S, Barthel H, Diehl-Schmid J, Draganski B, et al. Reference cluster normalization improves detection of frontotemporal lobar degeneration by means of FDG-PET. PLoS One 2013;8:e55415.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Küntzelmann A, Guenther T, Haberkorn U, Essig M, Giesel F, Henze R, et al. Impaired cerebral glucose metabolism in prodromal Alzheimer’s disease differs by regional intensity normalization. Neurosci Lett 2013;534:12–7.

    Article  PubMed  Google Scholar 

  33. Perani D, Della Rosa PA, Cerami C, Gallivanone F, Fallanca F, Vanoli EG, et al. Validation of an optimized SPM procedure for FDG-PET in dementia diagnosis in a clinical setting. Neuroimage Clin 2014;6:445–54.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Rogalski E, Cobia D, Harrison TM, Wieneke C, Weintraub S, Mesulam MM. Progression of language decline and cortical atrophy in subtypes of primary progressive aphasia. Neurology 2011;76:1804–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Matias-Guiu JA, Cabrera-Martín MN, García-Ramos R, Moreno-Ramos T, Valles-Salgado M, Carreras JL, et al. Evaluation of the new consensus criteria for the diagnosis of primary progressive aphasia using fluorodeoxyglucose positron emission tomography. Dement Geriatr Cogn Disord 2014;38:147–52.

    Article  PubMed  Google Scholar 

Download references

Compliance with ethical standards

All procedures performed involving human participants were in accordance with the ethical standards of the Institutional Research Committee and with the 1964 Helsinki Declaration and its later amendments.

Conflicts of interest

None.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordi A. Matías-Guiu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 92 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matías-Guiu, J.A., Cabrera-Martín, M.N., Pérez-Castejón, M.J. et al. Visual and statistical analysis of 18F-FDG PET in primary progressive aphasia. Eur J Nucl Med Mol Imaging 42, 916–927 (2015). https://doi.org/10.1007/s00259-015-2994-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-015-2994-9

Keywords

Navigation