Skip to main content
Log in

18F-Fluorodeoxyglucose PET/CT predicts tumour progression after transarterial chemoembolization in hepatocellular carcinoma

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

18F-FDG PET monitoring of FDG uptake may be a useful tool for assessment of the biological behaviour of hepatocellular carcinoma (HCC). We evaluated the correlation between FDG uptake on 18F-FDG PET and clinical characteristics and prognosis.

Methods

In total, 58 HCC patients undergoing 18F-FDG PET before transarterial chemoembolization (TACE) between May 2007 and May 2010 at Seoul St. Mary’s Hospital were evaluated retrospectively. The predictive value of the ratio of maximal tumour standardized uptake value (SUV) to mean liver SUV (Tsuv max/Lsuv mean) was tested. Primary endpoints were the clinical characteristics and treatment response according to Tsuv max/Lsuv mean. The secondary endpoint was time to progression (TTP).

Results

A high SUV ratio (cutoff value 1.70) correlated significantly with tumour size (≥5 cm) and serum AFP level (≥400 ng/mL). Objective response rates were significantly different between those with a ratio above (15.7 %) and those with a ratio below (66.6 %) the cutoff value (P = 0.023). Patients in the low SUV ratio group had a median TTP of 16.8 months compared with 8.1 months in the high SUV ratio group (P = 0.011). Overall survival in the high SUV ratio group was worse than in the low SUV ratio group (median 56.5 vs. 23.3 months), although the difference was not statistically significant in a multivariate analysis.

Conclusion

Tumour metabolic activity (Tsuv max/Lsuv mean), assessed by PET/CT, is an independent predictor of response to TACE in patients with intermediate-stage HCC. Tsuv max/Lsuv mean can be used to predict tumour progression. Thus, 18F-FDG PET can provide valuable information for prediction of prognosis and aid in decisions regarding treatment strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Figure 4

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.

    Article  PubMed  Google Scholar 

  2. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet. 2003;362:1907–17. doi:10.1016/S0140-6736(03)14964-1.

    Article  PubMed  Google Scholar 

  3. Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53:1020–2. doi:10.1002/hep.24199.

    Article  PubMed  Google Scholar 

  4. Tandon P, Garcia-Tsao G. Prognostic indicators in hepatocellular carcinoma: a systematic review of 72 studies. Liver Int. 2009;29:502–10. doi:10.1111/j.1478-3231.2008.01957.x.

    Article  PubMed  Google Scholar 

  5. Lin CY, Chen JH, Liang JA, Lin CC, Jeng LB, Kao CH. 18F-FDG PET or PET/CT for detecting extrahepatic metastases or recurrent hepatocellular carcinoma: a systematic review and meta-analysis. Eur J Radiol. 2012;81:2417–22. doi:10.1016/j.ejrad.2011.08.004.

    Article  PubMed  Google Scholar 

  6. Trojan J, Schroeder O, Raedle J, Baum RP, Herrmann G, Jacobi V, et al. Fluorine-18 FDG positron emission tomography for imaging of hepatocellular carcinoma. Am J Gastroenterol. 1999;94:3314–9. doi:10.1111/j.1572-0241.1999.01544.x.

    Article  PubMed  CAS  Google Scholar 

  7. Lee JD, Yun M, Lee JM, Choi Y, Choi YH, Kim JS, et al. Analysis of gene expression profiles of hepatocellular carcinomas with regard to 18F-fluorodeoxyglucose uptake pattern on positron emission tomography. Eur J Nucl Med Mol Imaging. 2004;31:1621–30. doi:10.1007/s00259-004-1602-1.

    Article  PubMed  CAS  Google Scholar 

  8. Yang SH, Suh KS, Lee HW, Cho EH, Cho JY, Cho YB, et al. The role of (18)F-FDG-PET imaging for the selection of liver transplantation candidates among hepatocellular carcinoma patients. Liver Transpl. 2006;12:1655–60. doi:10.1002/lt.20861.

    Article  PubMed  Google Scholar 

  9. Lencioni R, Llovet JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis. 2010;30:52–60. doi:10.1055/s-0030-1247132.

    Article  PubMed  CAS  Google Scholar 

  10. Busk M, Horsman MR, Kristjansen PE, van der Kogel AJ, Bussink J, Overgaard J. Aerobic glycolysis in cancers: implications for the usability of oxygen-responsive genes and fluorodeoxyglucose-PET as markers of tissue hypoxia. Int J Cancer. 2008;122:2726–34. doi:10.1002/ijc.23449.

    Article  PubMed  CAS  Google Scholar 

  11. Amann T, Maegdefrau U, Hartmann A, Agaimy A, Marienhagen J, Weiss TS, et al. GLUT1 expression is increased in hepatocellular carcinoma and promotes tumorigenesis. Am J Pathol. 2009;174:1544–52. doi:10.2353/ajpath.2009.080596.

    Article  PubMed  CAS  Google Scholar 

  12. Mocherla B, Kim J, Roayaie S, Kim S, Machac J, Kostakoglu L. FDG PET/CT imaging to rule out extrahepatic metastases before liver transplantation. Clin Nucl Med. 2007;32:947–8. doi:10.1097/RLU.0b013e3181598cef.

    Article  PubMed  Google Scholar 

  13. Higashi T, Hatano E, Ikai I, Nishii R, Nakamoto Y, Ishizu K, et al. FDG PET as a prognostic predictor in the early post-therapeutic evaluation for unresectable hepatocellular carcinoma. Eur J Nucl Med Mol Imaging. 2010;37:468–82. doi:10.1007/s00259-009-1284-9.

    Article  PubMed  Google Scholar 

  14. Lee JH, Park JY, Kim do Y, Ahn SH, Han KH, Seo HJ, et al. Prognostic value of 18F-FDG PET for hepatocellular carcinoma patients treated with sorafenib. Liver Int. 2011;31:1144–9. doi:10.1111/j.1478-3231.2011.02541.x.

    Article  PubMed  CAS  Google Scholar 

  15. Kornberg A, Kupper B, Tannapfel A, Buchler P, Krause B, Witt U, et al. Patients with non-[18F]fludeoxyglucose-avid advanced hepatocellular carcinoma on clinical staging may achieve long-term recurrence-free survival after liver transplantation. Liver Transpl. 2012;18:53–61. doi:10.1002/lt.22416.

    Article  PubMed  Google Scholar 

  16. Song MJ, Bae SH, Yoo Ie R, Park CH, Jang JW, Chun HJ, et al. Predictive value of 18F-fluorodeoxyglucose PET/CT for transarterial chemolipiodolization of hepatocellular carcinoma. World J Gastroenterol. 2012;18:3215–22. doi:10.3748/wjg.v18.i25.3215.

    PubMed  CAS  Google Scholar 

  17. Ahn SG, Kim SH, Jeon TJ, Cho HJ, Choi SB, Yun MJ, et al. The role of preoperative [18F]fluorodeoxyglucose positron emission tomography in predicting early recurrence after curative resection of hepatocellular carcinomas. J Gastrointest Surg. 2011;15:2044–52. doi:10.1007/s11605-011-1660-1.

    Article  PubMed  Google Scholar 

  18. Kim BK, Kang WJ, Kim JK, Seong J, Park JY, Kim do Y. (18)F-fluorodeoxyglucose uptake on positron emission tomography as a prognostic predictor in locally advanced hepatocellular carcinoma. Cancer. 2011;117:4779–87. doi:10.1002/cncr.26099.

    Article  PubMed  Google Scholar 

  19. Llovet JM, Di Bisceglie AM, Bruix J, Kramer BS, Lencioni R, Zhu AX, et al. Design and endpoints of clinical trials in hepatocellular carcinoma. J Natl Cancer Inst. 2008;100:698–711. doi:10.1093/jnci/djn134.

    Article  PubMed  Google Scholar 

  20. Llovet JM, Real MI, Montana X, Planas R, Coll S, Aponte J, et al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet. 2002;359:1734–9. doi:10.1016/S0140-6736(02)08649-X.

    Article  PubMed  Google Scholar 

  21. Bruix J, Sala M, Llovet JM. Chemoembolization for hepatocellular carcinoma. Gastroenterology. 2004;127:S179–88.

    Article  PubMed  CAS  Google Scholar 

  22. Lencioni R. Loco-regional treatment of hepatocellular carcinoma. Hepatology. 2010;52:762–73. doi:10.1002/hep.23725.

    Article  PubMed  CAS  Google Scholar 

  23. Iwata Y, Shiomi S, Sasaki N, Jomura H, Nishiguchi S, Seki S, et al. Clinical usefulness of positron emission tomography with fluorine-18-fluorodeoxyglucose in the diagnosis of liver tumors. Ann Nucl Med. 2000;14:121–6.

    Article  PubMed  CAS  Google Scholar 

  24. Torizuka T, Tamaki N, Inokuma T, Magata Y, Sasayama S, Yonekura Y, et al. In vivo assessment of glucose metabolism in hepatocellular carcinoma with FDG-PET. J Nucl Med. 1995;36:1811–7.

    PubMed  CAS  Google Scholar 

  25. Yamamoto Y, Nishiyama Y, Kameyama R, Okano K, Kashiwagi H, Deguchi A, et al. Detection of hepatocellular carcinoma using 11C-choline PET: comparison with 18F-FDG PET. J Nucl Med. 2008;49:1245–8. doi:10.2967/jnumed.108.052639.

    Article  PubMed  Google Scholar 

  26. Seo S, Hatano E, Higashi T, Hara T, Tada M, Tamaki N, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography predicts tumor differentiation, P-glycoprotein expression, and outcome after resection in hepatocellular carcinoma. Clin Cancer Res. 2007;13:427–33. doi:10.1158/1078-0432.CCR-06-1357.

    Article  PubMed  CAS  Google Scholar 

  27. Megyesi C, Samols E, Marks V. Glucose tolerance and diabetes in chronic liver disease. Lancet. 1967;2:1051–6.

    Article  PubMed  CAS  Google Scholar 

  28. Petrides AS, DeFronzo RA. Glucose metabolism in cirrhosis: a review with some perspectives for the future. Diabetes Metab Rev. 1989;5:691–709.

    Article  PubMed  CAS  Google Scholar 

  29. Sugiyama M, Sakahara H, Torizuka T, Kanno T, Nakamura F, Futatsubashi M, et al. 18F-FDG PET in the detection of extrahepatic metastases from hepatocellular carcinoma. J Gastroenterol. 2004;39:961–8. doi:10.1007/s00535-004-1427-5.

    Article  PubMed  CAS  Google Scholar 

  30. Ledoux S, Yang R, Friedlander G, Laouari D. Glucose depletion enhances P-glycoprotein expression in hepatoma cells: role of endoplasmic reticulum stress response. Cancer Res. 2003;63:7284–90.

    PubMed  CAS  Google Scholar 

  31. Song MJ, Chun HJ, Song do S, Kim HY, Yoo SH, Park CH, et al. Comparative study between doxorubicin-eluting beads and conventional transarterial chemoembolization for treatment of hepatocellular carcinoma. J Hepatol. 2012;57:1244–50. doi:10.1016/j.jhep.2012.07.017.

    Article  PubMed  CAS  Google Scholar 

  32. Lewandowski RJ, Kulik LM, Riaz A, Senthilnathan S, Mulcahy MF, Ryu RK, et al. A comparative analysis of transarterial downstaging for hepatocellular carcinoma: chemoembolization versus radioembolization. Am J Transplant. 2009;9:1920–8. doi:10.1111/j.1600-6143.2009.02695.x.

    Article  PubMed  CAS  Google Scholar 

  33. Chiesa C, Maccauro M, Romito R, Spreafico C, Pellizzari S, Negri A, et al. Need, feasibility and convenience of dosimetric treatment planning in liver selective internal radiation therapy with (90)Y microspheres: the experience of the National Tumor Institute of Milan. Q J Nucl Med Mol Imaging. 2011;55:168–97.

    PubMed  CAS  Google Scholar 

  34. Garin E, Lenoir L, Rolland Y, Edeline J, Mesbah H, Laffont S, et al. Dosimetry based on 99mTc-macroaggregated albumin SPECT/CT accurately predicts tumor response and survival in hepatocellular carcinoma patients treated with 90Y-loaded glass microspheres: preliminary results. J Nucl Med. 2012;53:255–63. doi:10.2967/jnumed.111.094235.

    Article  PubMed  CAS  Google Scholar 

  35. Memon K, Kulik L, Lewandowski RJ, Wang E, Riaz A, Ryu RK, et al. Radiographic response to locoregional therapy in hepatocellular carcinoma predicts patient survival times. Gastroenterology. 2011;141:526–35, 535 e1-2. doi:10.1053/j.gastro.2011.04.054.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by a National R & D Program grant for cancer control, Ministry of Health, Welfare and Family Affairs, Republic of Korea (R0620390-1).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si Hyun Bae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, M.J., Bae, S.H., Lee, S.W. et al. 18F-Fluorodeoxyglucose PET/CT predicts tumour progression after transarterial chemoembolization in hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 40, 865–873 (2013). https://doi.org/10.1007/s00259-013-2366-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2366-2

Keywords

Navigation