Skip to main content
Log in

LMI1195 PET imaging in evaluation of regional cardiac sympathetic denervation and its potential role in antiarrhythmic drug treatment

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

An Editorial Commentary to this article was published on 19 October 2012

Abstract

Purpose

Regional cardiac sympathetic denervation (RCSD) associated with reduced noradrenaline transporter (NAT) function has been linked to cardiac arrhythmia. This study examined the association of LMI1195, an 18F-labeled NAT substrate developed for positron emission tomography (PET) imaging, with NAT in vitro, and its imaging to detect RCSD and guide antiarrhythmic drug treatment in vivo.

Methods

LMI1195 association with NAT was assessed in comparison with other substrates, noradrenaline (NA) and 123I-metaiodobenzylguanidine (MIBG), in NAT-expressing cells. LMI1195 cardiac imaging was performed for evaluation of RCSD in a rabbit model surgically developed by regional phenol application on the left ventricular (LV) wall. The normal LV areas in images were quantified as regions with radioactivity ≥50 % maximum. Potential impact of RCSD on dofetilide, an antiarrhythmic drug, induced ECG changes was assessed.

Results

NAT blockade with desipramine reduced LMI1195 cell uptake by 90 ± 3 %, similar to NA and MIBG. NA, MIBG, or self inhibited LMI1195 cell uptake concentration-dependently with comparable IC50 values (1.09, 0.21, and 0.90 μM). LMI1195 cardiac imaging differentiated innervated and denervated areas in RCSD rabbits. The surgery resulted in a large denervated LV area at 2 weeks which was partially recovered at 12 weeks. Myocardial perfusion imaging with flurpiridaz F 18 showed normal perfusion in RCSD areas. Dofetilide induced more prominent QTc prolongation in RCSD than control animals. However, changes in heart rate were comparable.

Conclusion

LMI1195 exhibits high association with NAT and can be used for imaging RCSD. The detected RCSD increases cardiac risks to the antiarrhythmic drug, dofetilide, by inducing more QTc prolongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rundqvist B, Elam M, Bergmann-Sverrisdottir Y, Eisenhofer G, Friberg P. Increased cardiac adrenergic drive precedes generalized sympathetic activation in human heart failure. Circulation 1997;95(1):169–75.

    Article  PubMed  CAS  Google Scholar 

  2. Böhm M, La Rosée K, Schwinger RH, Erdmann E. Evidence for reduction of norepinephrine uptake sites in the failing human heart. J Am Coll Cardiol 1995;25(1):146–53.

    Article  PubMed  Google Scholar 

  3. Liang CS, Fan TH, Sullebarger JT, Sakamoto S. Decreased adrenergic neuronal uptake activity in experimental right heart failure. A chamber-specific contributor to beta-adrenoceptor downregulation. J Clin Invest 1989;84(4):1267–75.

    Article  PubMed  CAS  Google Scholar 

  4. Esler M. The 2009 Carl Ludwig Lecture: Pathophysiology of the human sympathetic nervous system in cardiovascular diseases: the transition from mechanisms to medical management. J Appl Physiol 2010;108(2):227–37.

    Article  PubMed  CAS  Google Scholar 

  5. Bengel FM, Schwaiger M. Assessment of cardiac sympathetic neuronal function using PET imaging. J Nucl Cardiol 2004;11(5):603–16.

    Article  PubMed  Google Scholar 

  6. Henneman MM, Bengel FM, van der Wall EE, Knuuti J, Bax JJ. Cardiac neuronal imaging: application in the evaluation of cardiac disease. J Nucl Cardiol 2008;15(3):442–55.

    Article  PubMed  Google Scholar 

  7. Travin MI. Cardiac neuronal imaging at the edge of clinical application. Cardiol Clin 2009;27(2):311–27.

    Article  PubMed  Google Scholar 

  8. Carrió I. Cardiac neurotransmission imaging. J Nucl Med 2001;42(7):1062–76.

    PubMed  Google Scholar 

  9. Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol 2010;55(20):2212–21.

    Article  PubMed  Google Scholar 

  10. Pietilä M, Malminiemi K, Ukkonen H, Saraste M, Någren K, Lehikoinen P, et al. Reduced myocardial carbon-11 hydroxyephedrine retention is associated with poor prognosis in chronic heart failure. Eur J Nucl Med 2001;28(3):373–6.

    Article  PubMed  Google Scholar 

  11. Podrid PJ, Fuchs T, Candinas R. Role of the sympathetic nervous system in the genesis of ventricular arrhythmia. Circulation 1990;82(2 Suppl):I103–13.

    PubMed  CAS  Google Scholar 

  12. Chen LS, Zhou S, Fishbein MC, Chen PS. New perspectives on the role of autonomic nervous system in the genesis of arrhythmias. J Cardiovasc Electrophysiol 2007;18(1):123–7.

    Article  PubMed  Google Scholar 

  13. Dae MW, Lee RJ, Ursell PC, Chin MC, Stillson CA, Moise NS. Heterogeneous sympathetic innervation in German shepherd dogs with inherited ventricular arrhythmia and sudden cardiac death. Circulation 1997;96(4):1337–42.

    Article  PubMed  CAS  Google Scholar 

  14. Mitrani RD, Klein LS, Miles WM, Hackett FK, Burt RW, Wellman HN, et al. Regional cardiac sympathetic denervation in patients with ventricular tachycardia in the absence of coronary artery disease. J Am Coll Cardiol 1993;22(5):1344–53.

    Article  PubMed  CAS  Google Scholar 

  15. Sasano T, Abraham MR, Chang KC, Ashikaga H, Mills KJ, Holt DP, et al. Abnormal sympathetic innervation of viable myocardium and the substrate of ventricular tachycardia after myocardial infarction. J Am Coll Cardiol 2008;51(23):2266–75.

    Article  PubMed  Google Scholar 

  16. Stevens MJ, Raffel DM, Allman KC, Dayanikli F, Ficaro E, Sandford T, et al. Cardiac sympathetic dysinnervation in diabetes: implications for enhanced cardiovascular risk. Circulation 1998;98(10):961–8.

    Article  PubMed  CAS  Google Scholar 

  17. Boogers MJ, Borleffs CJ, Henneman MM, van Bommel RJ, van Ramshorst J, Boersma E, et al. Cardiac sympathetic denervation assessed with 123-iodine metaiodobenzylguanidine imaging predicts ventricular arrhythmias in implantable cardioverter-defibrillator patients. J Am Coll Cardiol 2010;55(24):2769–77.

    Article  PubMed  Google Scholar 

  18. Matsunari I, Aoki H, Nomura Y, Takeda N, Chen WP, Taki J, et al. Iodine-123 metaiodobenzylguanidine imaging and carbon-11 hydroxyephedrine positron emission tomography compared in patients with left ventricular dysfunction. Circ Cardiovasc Imaging 2010;3(5):595–603.

    Article  PubMed  Google Scholar 

  19. Yu M, Bozek J, Lamoy M, Guaraldi M, Silva P, Kagan M, et al. Evaluation of LMI1195, a novel 18F-labeled cardiac neuronal PET imaging agent, in cells and animal models. Circ Cardiovasc Imaging 2011;4(4):435–43.

    Article  PubMed  Google Scholar 

  20. Yap YG, Camm AJ. Drug induced QT prolongation and torsades de pointes. Heart 2003;89(11):1363–72.

    Article  PubMed  CAS  Google Scholar 

  21. Lenz TL, Hilleman DE. Dofetilide, a new class III antiarrhythmic agent. Pharmacotherapy 2000;20(7):776–86.

    Article  PubMed  CAS  Google Scholar 

  22. Mounsey JP, DiMarco JP. Cardiovascular drugs. Dofetilide. Circulation 2000;102(21):2665–70.

    Article  PubMed  CAS  Google Scholar 

  23. Buck J, Bruchelt G, Girgert R, Treuner J, Niethammer D. Specific uptake of m-[125I]iodobenzylguanidine in the human neuroblastoma cell line SK-N-SH. Cancer Res 1985;45(12 Pt 1):6366–70.

    PubMed  CAS  Google Scholar 

  24. Yu M, Bozek J, Guaraldi M, Kagan M, Azure M, Robinson SP. Cardiac imaging and safety evaluation of BMS747158, a novel PET myocardial perfusion imaging agent, in chronic myocardial compromised rabbits. J Nucl Cardiol 2010;17(4):631–6.

    Article  PubMed  Google Scholar 

  25. Yu M, Nekolla SG, Schwaiger M, Robinson SP. The next generation of cardiac positron emission tomography imaging agents: discovery of flurpiridaz F-18 for detection of coronary disease. Semin Nucl Med 2011;41(4):305–13.

    Article  PubMed  Google Scholar 

  26. Yu M, Guaraldi MT, Mistry M, Kagan M, McDonald JL, Drew K, et al. BMS-747158-02: a novel PET myocardial perfusion imaging agent. J Nucl Cardiol 2007;14(6):789–98.

    Article  PubMed  CAS  Google Scholar 

  27. Nekolla SG, Reder S, Saraste A, Higuchi T, Dzewas G, Preissel A, et al. Evaluation of the novel myocardial perfusion positron-emission tomography tracer 18F-BMS-747158-02: comparison to 13N-ammonia and validation with microspheres in a pig model. Circulation 2009;119(17):2333–42.

    Article  PubMed  CAS  Google Scholar 

  28. Matsunari I, Yoneyama T, Kanayama S, Matsudaira M, Nakajima K, Taki J, et al. Phantom studies for estimation of defect size on cardiac (18)F SPECT and PET: implications for myocardial viability assessment. J Nucl Med 2001;42(10):1579–85.

    PubMed  CAS  Google Scholar 

  29. Sherif HM, Saraste A, Weidl E, Weber AW, Higuchi T, Reder S, et al. Evaluation of a novel (18)F-labeled positron-emission tomography perfusion tracer for the assessment of myocardial infarct size in rats. Circ Cardiovasc Imaging 2009;2(2):77–84.

    Article  PubMed  Google Scholar 

  30. Simões MV, Barthel P, Matsunari I, Nekolla SG, Schömig A, Schwaiger M, et al. Presence of sympathetically denervated but viable myocardium and its electrophysiologic correlates after early revascularised, acute myocardial infarction. Eur Heart J 2004;25(7):551–7.

    Article  PubMed  Google Scholar 

  31. Vaidyanathan G, Zhao XG, Strickland DK, Zalutsky MR. No-carrier-added iodine-131-FIBG: evaluation of an MIBG analog. J Nucl Med 1997;38(2):330–4.

    PubMed  CAS  Google Scholar 

  32. Ko BH, Paik JY, Jung KH, Bae JS, Lee EJ, Choe YS, et al. Effects of anesthetic agents on cellular 123I-MIBG transport and in vivo 123I-MIBG biodistribution. Eur J Nucl Med Mol Imaging 2008;35(3):554–61.

    Article  PubMed  CAS  Google Scholar 

  33. Raffel DM, Jung YW, Gildersleeve DL, Sherman PS, Moskwa JJ, Tluczek LJ, et al. Radiolabeled phenethylguanidines: novel imaging agents for cardiac sympathetic neurons and adrenergic tumors. J Med Chem 2007;50(9):2078–88.

    Article  PubMed  CAS  Google Scholar 

  34. Münch G, Nguyen NT, Nekolla S, Ziegler S, Muzik O, Chakraborty P, et al. Evaluation of sympathetic nerve terminals with [(11)C]epinephrine and [(11)C]hydroxyephedrine and positron emission tomography. Circulation 2000;101(5):516–23.

    Article  PubMed  Google Scholar 

  35. Glowniak JV, Wilson RA, Joyce ME, Turner FE. Evaluation of metaiodobenzylguanidine heart and lung extraction fraction by first-pass analysis in pigs. J Nucl Med 1992;33(5):716–23.

    PubMed  CAS  Google Scholar 

  36. Maddahi J, Czernin J, Lazewatsky J, Huang SC, Dahlbom M, Schelbert H, et al. Phase I, first-in-human study of BMS747158, a novel 18F-labeled tracer for myocardial perfusion PET: dosimetry, biodistribution, safety, and imaging characteristics after a single injection at rest. J Nucl Med 2011;52(9):1490–8.

    Article  PubMed  CAS  Google Scholar 

  37. Minardo JD, Tuli MM, Mock BH, Weiner RE, Pride HP, Wellman HN, et al. Scintigraphic and electrophysiological evidence of canine myocardial sympathetic denervation and reinnervation produced by myocardial infarction or phenol application. Circulation 1988;78(4):1008–19.

    Article  PubMed  CAS  Google Scholar 

  38. Rimoldi OE, Drake-Holland AJ, Noble MI, Camici PG. Basal and hyperaemic myocardial blood flow in regionally denervated canine hearts: an in vivo study with positron emission tomography. Eur J Nucl Med Mol Imaging 2007;34(2):197–205.

    Article  PubMed  Google Scholar 

  39. Scholte AJ, Schuijf JD, Delgado V, Kok JA, Bus MT, Maan AC, et al. Cardiac autonomic neuropathy in patients with diabetes and no symptoms of coronary artery disease: comparison of 123I-metaiodobenzylguanidine myocardial scintigraphy and heart rate variability. Eur J Nucl Med Mol Imaging 2010;37(9):1698–705.

    Article  PubMed  Google Scholar 

  40. Tamaki N, Yoshinaga K. Novel iodinated tracers, MIBG and BMIPP, for nuclear cardiology. J Nucl Cardiol 2011;18(1):135–43.

    Article  PubMed  Google Scholar 

  41. Calkins H, Allman K, Bolling S, Kirsch M, Wieland D, Morady F, et al. Correlation between scintigraphic evidence of regional sympathetic neuronal dysfunction and ventricular refractoriness in the human heart. Circulation 1993;88(1):172–9.

    Article  PubMed  CAS  Google Scholar 

  42. Fallavollita J, Heavey BM, Baldwa S, Mashtare TL, Jr, Hutson AD, Sajjad M, et al. Volume of denervated myocardium is a novel predictor of VT/VF: prediction of arrhythmic events with positron emission tomography (PAREPET) study. Presented as a Late-Breaking Clinical Trial, May 10 at Heart Rhythm 33rd Annual Scientific Sessions. 2012.

  43. Odaka K, von Scheidt W, Ziegler SI, Ueberfuhr P, Nekolla SG, Reichart B, et al. Reappearance of cardiac presynaptic sympathetic nerve terminals in the transplanted heart: correlation between PET using (11)C-hydroxyephedrine and invasively measured norepinephrine release. J Nucl Med 2001;42(7):1011–6.

    PubMed  CAS  Google Scholar 

  44. Backs J, Haunstetter A, Gerber SH, Metz J, Borst MM, Strasser RH, et al. The neuronal norepinephrine transporter in experimental heart failure: evidence for a posttranscriptional downregulation. J Mol Cell Cardiol 2001;33(3):461–72.

    Article  PubMed  CAS  Google Scholar 

  45. Kawai H, Mohan A, Hagen J, Dong E, Armstrong J, Stevens SY, et al. Alterations in cardiac adrenergic terminal function and beta-adrenoceptor density in pacing-induced heart failure. Am J Physiol Heart Circ Physiol 2000;278(5):H1708–16.

    PubMed  CAS  Google Scholar 

  46. Haider N, Baliga RR, Chandrashekhar Y, Narula J. Adrenergic excess, hNET1 down-regulation, and compromised mIBG uptake in heart failure poverty in the presence of plenty. JACC Cardiovasc Imaging 2010;3(1):71–5.

    Article  PubMed  Google Scholar 

  47. Nattel S. The molecular and ionic specificity of antiarrhythmic drug actions. J Cardiovasc Electrophysiol 1999;10(2):272–82.

    Article  PubMed  CAS  Google Scholar 

  48. Smith AH, Norris KJ, Roden DM, Kannankeril PJ. Autonomic tone attenuates drug-induced QT prolongation. J Cardiovasc Electrophysiol 2007;18(9):960–4.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Some of the data were presented at the Society of Nuclear Medicine annual meeting in 2011.

Conflicts of interest

All authors are employees of Lantheus Medical Imaging Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, M., Bozek, J., Lamoy, M. et al. LMI1195 PET imaging in evaluation of regional cardiac sympathetic denervation and its potential role in antiarrhythmic drug treatment. Eur J Nucl Med Mol Imaging 39, 1910–1919 (2012). https://doi.org/10.1007/s00259-012-2204-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-012-2204-y

Keywords

Navigation