Skip to main content

Advertisement

Log in

Abstract

Introduction

Positron emission tomography (PET) is the most sensitive of all medical imaging modalities for quantitatively probing biologic processes at the molecular level. However, spatial resolution in PET is significantly inferior to that of other imaging modalities that can provide exquisite images of the anatomy, such as X-ray computed tomography (CT) or magnetic resonance (MR) imaging.

Objective

It has been one of the outstanding challenges of the last decade to combine PET with these complementary imaging modalities in order to synergistically exploit the benefits of each modality and to enhance the role of PET in pre-clinical research as well as in clinical routine and research.

Discussion

The simple juxtaposition of tomographs around a common axial bed, such as with current PET/CT technology, is very successful in allowing sequential acquisition of PET and anatomical data. However, novel imaging combinations are being considered that would enable simultaneous, or at least concurrent, dual-modality imaging through combined PET/MR or PET/CT. The development of these new integrated instruments creates new bewildering challenges for PET detection systems, which, in addition to the ability to measure annihilation radiation in PET, must satisfy several other critical requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Derenzo SE, Moses WW, Huesman RH, Budinger TF. Critical instrumentation issues for resolution smaller than 2 mm, high sensitivity brain PET. In: Uemura K, Lassen NA, Jones T, Kanno I, editors. Quantification of brain function, tracer kinetics and image analysis in brain PET. Amsterdam: Excerpta Medica; 1993. p. 25–40.

    Google Scholar 

  2. Levin CS, Zaidi H. Current trends in preclinical PET system design. PET Clin 2007;2:125–60.

    Article  Google Scholar 

  3. St.James S, Thompson CJ. Image blurring due to light-sharing in PET block detectors. Med Phys 2006;33 2:405–10.

    Article  PubMed  Google Scholar 

  4. Lecomte R. Technology challenges in small animal PET imaging. Nucl Instrum Meth Phys Res A 2004;527:157–65.

    Article  CAS  Google Scholar 

  5. Derenzo SE. Mathematical removal of positron range blurring in high resolution tomography. IEEE Trans Nucl Sci 1986;33 1:565–9.

    Article  Google Scholar 

  6. Levin CS, Hoffman EJ. Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol 1999;44 3:781–99.

    Article  PubMed  CAS  Google Scholar 

  7. Bentourkia M, Msaki P, Cadorette J, Lecomte R. Assessment of scatter components in high-resolution PET: correction by nonstationary convolution subtraction. J Nucl Med 1995;36 1:121–30.

    PubMed  CAS  Google Scholar 

  8. Hoffman EJ, Phelps ME. Positron emission tomography: principles and quantitation. In: Phelps ME, Mazziotta JC, Shelbert HR, editors. Positron emission tomography and autoradiography: principles and applications for the brain and heart. Chap. 6. New York: Raven; 1986. p. 237–86.

    Google Scholar 

  9. Strother SC, Casey ME, Hoffman EJ. Measuring PET scanner sensitivity: relating countrates to image signal-to-noise ratios using noise equivalent counts. IEEE Trans Nucl Sci 1990;37 1:783–8.

    Article  Google Scholar 

  10. Budinger TF. Time-of-flight positron emission tomography: status relative to conventional PET. J Nucl Med 1983;24:73–8.

    PubMed  CAS  Google Scholar 

  11. Blodgett TM, Meltzer CC, Townsend DW. PET/CT: form and function. Radiology 2007;242 2:360–85.

    Article  PubMed  Google Scholar 

  12. Kinahan PE, Townsend DW, Beyer T, Sashin D. Attenuation correction for a combined 3D PET/CT scanner. Med Phys 1998;25:2046–53.

    Article  PubMed  CAS  Google Scholar 

  13. Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med 2007;48:932–45.

    Article  PubMed  Google Scholar 

  14. Townsend DW, Isoardi RA, Bendriem B. Volume imaging tomographs. In: Bendriem B, Townsend DW, editors. The theory and practice of 3D PET. Dordrecht: Kluwer; 1998. p. 111–32.

    Google Scholar 

  15. Strobel K, Rudy M, Treyer V, Veit-Haibach P, Burger C, Hany TF. Objective and subjective comparison of standard 2-D and fully 3-D reconstructed data on a PET/CT system. Nucl Med Commun 2007;28:555–9.

    Article  PubMed  Google Scholar 

  16. Eriksson L, Townsend D, Conti M, Eriksson M, Rothfuss H, Schmand M, et al. An investigation of sensitivity limits in PET scanners. Nucl Instrum Meth Phys Res A 2007;580 2:836–42.

    Article  CAS  Google Scholar 

  17. Moses WW. Time of flight in PET revisited. IEEE Trans Nucl Sci 2003;50 5:1325–30.

    Article  Google Scholar 

  18. Surti S, Karp S, Popescu LM, Daube-Witherspoon E, Werner M. Investigation of time-of-flight benefit for fully 3-D PET. IEEE Trans Med Imaging 2006;25 5:529–38.

    Article  PubMed  Google Scholar 

  19. Kuhn A, Surti S, Karp JS, Muehllehner G, Newcomer FM, VanBerg R. Performance assessment of pixelated LaBr3 detector modules for time-of-flight PET. IEEE Trans Nucl Sci 2006;53 3:1090–5.

    Article  CAS  Google Scholar 

  20. Moses WW. Recent advances and future advances in time-of-flight PET. Nucl Instrum Meth Phys Res A 2007;580 2:919–24.

    Article  CAS  Google Scholar 

  21. Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med 2007;48:471–80.

    PubMed  Google Scholar 

  22. Surti S, Karp JS, Adam LE, Muehllchner G. Performance measurements for the GSO-based brain PET camera (G-PET). IEEE Nucl Sci Symp Conf Rec 2001;2:1109–14.

    Google Scholar 

  23. Watanabe M, Shimizu K, Omura T, Takahashi M, Kosugi T, Yoshikawa E, et al. A new high-resolution PET scanner dedicated to brain research. IEEE Trans Nucl Sci 2002;49 3:634–9.

    Article  Google Scholar 

  24. Wienhard K, Schmand M, Casey ME, Baker K, Bao J, Eriksson L, et al. The ECAT HRRT: performance and first clinical application of the new high resolution research tomograph. IEEE Trans Nucl Sci 2002;49 1:104–10.

    Article  Google Scholar 

  25. de Jong HW, van Velden FH, Kloet RW, Buijs FL, Boellaard R, Lammertsma AA. Performance evaluation of the ECAT HRRT: an LSO–LYSO double layer high resolution, high sensitivity scanner. Phys Med Biol 2007;52 5:1505–26.

    Article  PubMed  Google Scholar 

  26. Thompson CJ, Murthy K, Picard Y, Weinberg IN, Mako R. Positron emission mammography (PEM): a promising technique for detecting breast cancer. IEEE Trans Nucl Sci 1995;42 4:1012–7.

    Article  Google Scholar 

  27. Doshi NK, Silverman RW, Shao Y, Cherry SR. maxPET, a dedicated mammary and axillary region PET imaging system for breast cancer. IEEE Trans Nucl Sci 2001;48 3:811–5.

    Article  Google Scholar 

  28. Abreu MC, Aguiar JD, Almeida FG, Almeida P, Bento P, Carrico B, et al. Design and evaluation of the Clear-PEM scanner for positron emission mammography. IEEE Trans Nucl Sci 2006;53 1:71–7.

    Article  CAS  Google Scholar 

  29. Raylman RR, Majewski S, Smith MF, Proffitt J, Hammond W, Srinivasan A, et al. The positron emission mammography/tomography breast imaging and biopsy system (PEM/PET): design, construction and phantom-based measurements. Phys Med Biol 2008;53 3:637–53.

    Article  PubMed  Google Scholar 

  30. Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000;41:1369–79.

    PubMed  CAS  Google Scholar 

  31. Townsend DW. Multimodality imaging of structure and function. Phys Med Biol 2008;53:R1–R39.

    Article  PubMed  CAS  Google Scholar 

  32. Goertzen AL, Meadors AK, Silverman RW, Cherry SR. Simultaneous molecular and anatomical imaging of the mouse in vivo. Phys Med Biol 2002;47 24:4315–28.

    Article  PubMed  Google Scholar 

  33. Domenico GD, Cesca N, Zavattini G, Auricchio N, Gambaccini M. CT with a CMOS flat panel detector integrated on the YAP-(S)PET scanner for in vivo small animal imaging. Nucl Instrum Meth Phys Res A 2007;571:110–3.

    Article  CAS  Google Scholar 

  34. Khodaverdi M, Nicol S, Loess J, Cassol Brunner F, Karkar S, Morel C. Design study for the ClearPET/XPAD small animal PET/CT scanner. IEEE Nucl Sci Symp Conf Rec 2007;6:4300–2.

    Google Scholar 

  35. Hasegawa BH, Gingold EL, Reilly SM, Liew SC, Cann CE. Description of a simultaneous emission–transmission CT system. Proc SPIE 1990;1231:50–60.

    Article  Google Scholar 

  36. Lang TF, Hasegawa BH, Liew SC, Brown JK, Blankespoor SC, Reilly SM, et al. Description of a prototype emission–transmission computed tomography imaging system. J Nucl Med 1992;33 10:1881–7.

    PubMed  CAS  Google Scholar 

  37. Saoudi A, Lecomte R. A novel APD-based detector module for multi-modality PET/SPECT/CT scanners. IEEE Trans Nucl Sci 1999;46 3:479–84.

    Article  Google Scholar 

  38. Cirignano L, Shah KS, Bennett PR, Klugerman M, Dmitryev Y, Squillante MR, et al. Pixellated CdZnTe detector for emission/transmission computed tomography. Nucl Instrum Meth Phys Res A 1999;422:216–20.

    Article  CAS  Google Scholar 

  39. Bérard P, Pepin CM, Rouleau D, Cadorette J, Lecomte R. CT acquisition using PET detectors and electronics. IEEE Trans Nucl Sci 2005;52 3:634–7.

    Article  Google Scholar 

  40. Nassalski A, Moszynski M, Szczesniak T, et al. The road to the common PET/CT detector. IEEE Trans Nucl Sci 2007;54 5:1459–63.

    Article  CAS  Google Scholar 

  41. Nassalski A, Kapusta M, Batsch T, Wolski D, Mockel D, Enghardt W, et al. Comparative study of scintillators for PET/CT detectors. IEEE Trans Nucl Sci 2007;54 1:3–10.

    Article  CAS  Google Scholar 

  42. Powolny F, Auffray E, Hillemanns H, Jarron P, Lecoq P, Meyer TC, et al. Development of a new photo-detector readout technique for PET and CT. AIP Conf Proc 2007;958 1:260–1.

    Article  CAS  Google Scholar 

  43. Kruger H, Fink J, Kraft E, Wermes N, Fischer P, Peric I. CIX: a detector for spectrally enhanced X-ray imaging by simultaneous counting and integrating. Proc SPIE 2008;6913:69130P–1–12.

    Google Scholar 

  44. Bérard P, Bergeron M, Pepin CM, Cadorette J, Tétrault M-A, Viscogliosi N, et al. LabPET II, a novel 64-channel APD-based PET detector module with individual pixel readout achieving submillimetric spatial resolution IEEE Nucl Sci Symp Conf Rec 2008, M12-6; in press.

  45. Fontaine R, Bélanger F, Cadorette J, Leroux JD, Martin JP, Michaud JB, et al. Architecture of a dual-modality, high-resolution, fully digital positron emission tomography/computed tomography (PET/CT) scanner for small animal imaging. IEEE Trans Nucl Sci 2005;52 3:691–6.

    Article  Google Scholar 

  46. Meyer TC, Powolny F, Anghinolfi F, Auffray E, Dosanjh M, Hillemanns H, et al. A time-based front end readout system for PET & CT. IEEE Nucl Sci Symp Conf Rec 2006;4:2494–8.

    Google Scholar 

  47. Riendeau J, Bérard P, Viscogliosi N, Tétrault MA, Lemieux F, Lecomte R, et al. High rate photon counting CT using parallel digital PET electronics. IEEE Trans Nucl Sci 2008;55 1:40–7.

    Article  Google Scholar 

  48. Thibaudeau C, Bérard P, Tétrault M-A, Leroux J-D, Fontaine R, Lecomte R. Iterative CT reconstruction using LabPET™ detector modules. IEEE Nucl Sci Symp Conf Rec 2008, M06-361; in press.

  49. Francke T, Eklund M, Ericsson L, Kristoffersson T, Peskov V, Rantanen J, et al. Dose reduction in medical X-ray imaging using noise free photon counting. Nucl Instrum Meth Phys Res A 2001;471:85–7.

    Article  CAS  Google Scholar 

  50. Bérard P, Riendeau J, Pepin CM, Rouleau D, Cadorette J, Fontaine R, et al. Investigation of the LabPET™ detector and electronics for photon-counting CT imaging. Nucl Instrum Meth Phys Res A 2007;571:114–7.

    Article  CAS  Google Scholar 

  51. Schlomka JP, Roessl E, Dorscheid R, Dill S, Martens G, Istel T, et al. Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography. Phys Med Biol 2008;53:4031–47.

    Article  PubMed  CAS  Google Scholar 

  52. Frey EC, Wang X, Du Y, Taguchi K, Xu J, Tsui BMW. Investigation of the use of photon counting x-ray detectors with energy discrimination capability for material decomposition in micro-computed tomography. Proc SPIE 2007;6510:65100A.

    Article  CAS  Google Scholar 

  53. Cardi CA, Cao Z, Thakur ML, Karp JS, Acton PD. Pinhole PET (pPET): a multi-pinhole collimator insert for small animal SPECT imaging on PET cameras. IEEE Nucl Sci Symp Conf Rec 2005;4:4.

    Google Scholar 

  54. Cao Z, Bal G, Accorsi R, Acton PD. Optimal number of pinholes in multi-pinhole SPECT for mouse brain imaging—a simulation study. Phys Med Biol 2005;50:4609–24.

    Article  PubMed  Google Scholar 

  55. Del Guerra A, Bartoli A, Belcari N, Herbert D, Motta A, Vaiano A, et al. Performance evaluation of the fully engineered YAP-(S)PET scanner for small animal imaging. IEEE Trans Nucl Sci 2006;53 3:1078–83.

    Article  Google Scholar 

  56. Shao Y, Yao R, Ma T, Manchiraju P. Initial studies of PET–SPECT dual-tracer imaging. IEEE Nucl Sci Symp Conf Rec 2007;6:4198–204.

    Google Scholar 

  57. Thompson CJ, Murthy K, Weinberg IN, Mako F. Feasibility study for positron emission mammography. Med Phys 1994;21 4:529–38.

    Article  PubMed  CAS  Google Scholar 

  58. Bergman AM, Thompson CJ, Murthy K, Robar JL, Clancy RL, English MJ, et al. Technique to obtain positron emission mammography images in registration with X-ray mammograms. Med Phys 1998;25 11:2119–29.

    Article  PubMed  CAS  Google Scholar 

  59. Huber JS, Moses WW, Pouliot J, Hsu IC. Dual-modality PET/ultrasound imaging of the prostate. IEEE Nucl Sci Symp Conf Rec 2005;4:2187–90.

    Article  Google Scholar 

  60. Huber JS, Moses WW, Peng Q, Huesman RH, Reutter BW, Wilson DS, et al. Dual-modality prostate imaging with PET and transrectal ultrasound. IEEE Nucl Sci Symp 2008.

  61. Lecoq P, Mundler O. The ClearPEM-Sonic project, a dual modality approach of breast cancer. Eur J Nucl Med. 2008; in press.

  62. Prout DL, Silverman RW, Chatziioannou A. Detector concept for OPET-a combined PET and optical imaging system. IEEE Trans Nucl Sci 2004;51 3:752–6.

    Article  PubMed  Google Scholar 

  63. Takahashi K, Inadama N, Murayama H, Yamaya T, Yoshida E, Nishikido F, et al. Preliminary study of a DOI-PET detector with optical imaging capability. IEEE Nucl Sci Symp Conf Rec 2007;5:3318–21.

    Google Scholar 

  64. Culver J, Akers W, Achilefu S. Multimodality molecular imaging with combined optical and SPECT/PET modalities. J Nucl Med 2008;49 2:169–72.

    Article  PubMed  Google Scholar 

  65. van Eijk CWE. Inorganic scintillators in medical imaging. Phys Med Biol 2002;47 8:85–106.

    Article  Google Scholar 

  66. Korzhika M, Fedorova A, Annenkovb A, Borissevitcha A, Dossovitskic A, Missevitcha O, et al. Development of scintillation materials for PET scanners. Nucl Instrum Meth Phys Res A 2007;571:122–5.

    Article  CAS  Google Scholar 

  67. Derenzo SE, Weber MJ, Bourret-Courchesne E, Klintenberg MK. The quest for the ideal inorganic scintillator. Nucl Instrum Meth Phys Res A 2003;505:111–7.

    Article  CAS  Google Scholar 

  68. Cho ZH, Farukhi MR. Bismuth germanate as a potential scintillation detector in positron cameras. J Nucl Med 1977;18 8:840–4.

    PubMed  CAS  Google Scholar 

  69. Muehllehner G, Karp JS. Positron emission tomography. Phys Med Biol 2006;51 13:R117–37.

    Article  PubMed  CAS  Google Scholar 

  70. Melcher CL, Friedrich S, Cramer SP, Spurrier MA, Szupryczynski P, Nutt R. Cerium oxidation state in LSO:Ce scintillators. IEEE Trans Nucl Sci 2005;52 5:1809–12.

    Article  CAS  Google Scholar 

  71. Melcher CL. Perspectives on the future development of new scintillators. Nucl Instrum Meth Phys Res A 2005;537:6–14.

    Article  CAS  Google Scholar 

  72. Karp JS, Surti S, Daube-Witherspoon ME, Muehllehner G. Benefit of time-of-flight in PET: experimental and clinical results. J Nucl Med 2008;49 3:462–70.

    Article  PubMed  Google Scholar 

  73. Moses WW, Ullisch M. Factors influencing timing resolution in a commercial LSO PET camera. IEEE Trans Nucl Sci 2006;53 1:78–85.

    Article  Google Scholar 

  74. van Loef EVD, Dorenbos P, van Eijk CWE, Kramer K, Gudel HU. High-energy-resolution scintillator: Ce3+ activated LaBr3. Appl Phys Lett 2001;79 10:1573–5.

    Article  CAS  Google Scholar 

  75. Shah KS, Glodo J, Klugerman M, Moses WW, Derenzo SE, Weber MJ. LaBr3:Ce scintillators for gamma-ray spectroscopy. IEEE Trans Nucl Sci 2003;50 6:2410–3.

    Article  CAS  Google Scholar 

  76. Kuhn A, Surti S, Karp JS, Raby PS, Shah KS, Perkins AE, et al. Design of a lanthanum bromide detector for time-of-flight PET. IEEE Trans Nucl Sci 2004;51 5:2550–7.

    Article  CAS  Google Scholar 

  77. Yamamoto S, Kuroda K, Senda M. Scintillator selection for MR-compatible gamma detectors. IEEE Trans Nucl Sci 2003;50:1683–5.

    Article  CAS  Google Scholar 

  78. Derenzo SE, Huesman RH, Cahoon JL, Geyer AB, Moses WW, Uber DC, et al. A positron tomograph with 600 BGO crystals and 2.6 mm resolution. IEEE Trans Nucl Sci 1988;35 1:659–64.

    Article  CAS  Google Scholar 

  79. Muehllehner G, Colsher JG, Lewitt RM. Hexagonal bar positron camera: problems and solutions. IEEE Trans Nucl Sci 1982;30 1:652–60.

    Article  Google Scholar 

  80. Freifelder R, Karp JS, Geagan M, Muehllehner G. Design and performance of the head PENN-PET scanner. IEEE Trans Nucl Sci 1994;41 4:1436–40.

    Article  Google Scholar 

  81. Burnham CA, Bradshaw J, Kaufman D, Chesler D, Brownell GL. A stationary positron emission ring tomograph using BGO detector and analog readout. IEEE Trans Nucl Sci 1984;31 1:632–6.

    Article  Google Scholar 

  82. Surti S, Karp JS, Freifelder R, Liu F. Optimizing the performance of a PET detector using discrete GSO crystals on a continuous lightguide. IEEE Trans Nucl Sci 2000;47 3:1030–6.

    Article  CAS  Google Scholar 

  83. Casey ME, Nutt R. A multicrystal two dimensional BGO detector system for positron emission tomography. IEEE Trans Nucl Sci 1986;33 1:460–3.

    Article  Google Scholar 

  84. Uribe J, Aykac M, Baghaei H, Li H, Wang Y, Liu Y. Inexpensive position sensitive detector block for dedicated PET cameras using 40-mm diameter PMT in quadrant sharing configuration. IEEE Trans Nucl Sci 2003;50 3:367–2.

    Google Scholar 

  85. Shao Y, Cherry SR, Siegel S, Silverman RW, Majewski S. Evaluation of multi-channel PMTs for readout of scintillator arrays. Nucl Instrum Meth Phys Res A 1997;390:209–18.

    Article  CAS  Google Scholar 

  86. Shao Y, Cherry SR, Chatziioannou AF. Design and development of 1 mm resolution PET detectors with position-sensitive PMTs. Nucl Instrum Meth Phys Res A 2002;477:486–90.

    Article  CAS  Google Scholar 

  87. Rouze NC, Schmand M, Siegel S, Hutchins GD. Design of a small animal PET imaging system with 1 microliter volume resolution. IEEE Trans Nucl Sci 2004;51 3:757–63.

    Article  Google Scholar 

  88. Lee K, Miyaoka RS, Janes ML, Lewellen TK. Detector characteristics of the micro crystal element scanner (MiCES). IEEE Trans Nucl Sci 2005;52 5:1428–33.

    Article  Google Scholar 

  89. Stickel JR, Qi J, Cherry SR. Fabrication and characterization of a 0.5-mm lutetium oxyorthosilicate detector array for high-resolution PET applications. J Nucl Med 2007;48 1:115–21.

    PubMed  Google Scholar 

  90. Rouze NC, Soon VC, Young JW, Siegel S, Hutchins GD. Initial evaluation of the Indiana small animal PET scanner. IEEE Nucl Sci Symp Conf Rec 2005;4:2394–8.

    Article  Google Scholar 

  91. Stickel JR, Cherry SR. High-resolution PET detector design: modelling components of intrinsic spatial resolution. Phys Med Biol 2005;50:179–95.

    Article  PubMed  Google Scholar 

  92. Rafecas M, Böning G, Pichler BJ, Lorenz E, Schwaiger M, Ziegler SI. Inter-crystal scatter in a dual layer, high resolution LSO–APD positron emission tomograph. Phys Med Biol 2003;48:821–48.

    Article  PubMed  CAS  Google Scholar 

  93. Michaud JB, Brunet CA, Rafecas M, Lecomte R, Fontaine R. Sensitivity in PET: neural networks as an alternative to Compton photons LOR analysis. IEEE Nucl Sci Symp Conf Rec 2007;5:3594–600.

    Google Scholar 

  94. Levin CS. New imaging technologies to enhance the molecular sensitivity of positron emission tomography. Proc IEEE 2008;96 3:439–67.

    Article  CAS  Google Scholar 

  95. Moses WW, Derenzo SE, Melcher CL, Manente RA. Gamma ray spectroscopy and timing using LSO and PIN photodiodes. IEEE Trans Nucl Sci 1995;42 4:597–600.

    Article  CAS  Google Scholar 

  96. Levin CS, Hoffman EJ. Investigation of a new readout scheme for high resolution scintillation crystal arrays using photodiodes. IEEE Trans Nucl Sci 1997;44 3:1208–13.

    Article  Google Scholar 

  97. Moses WW, Derenzo SE, Nutt R, Digby WM, Williams CW, Andreaco M. Performance of a PET detector module utilizing an array of silicon photodiodes to identify the crystal of interaction. IEEE Trans Nucl Sci 1993;40 4:1036–40.

    Article  CAS  Google Scholar 

  98. Huber JS, Moses WW, Andreaco MS, Petterson O. An LSO scintillator array for a PET detector module with depth of interaction measurement. IEEE Trans Nucl Sci 2001;48 3:684–8.

    Article  Google Scholar 

  99. McIntyre RJ. Recent developments in silicon avalanche photodiodes. Measurement 1985;3 4:146–52.

    Article  Google Scholar 

  100. Lecomte R, Pepin C, Rouleau D, Dautet H, McIntyre RJ, McSween D, et al. Radiation detection measurements with a new ‘buried junction’ silicon avalanche photodiode. Nucl Instrum Meth Phys Res A 1999;423 1:92–102.

    Article  CAS  Google Scholar 

  101. Farrell R, Shah K, Vanderpuye K, Grazioso R, Myers R, Entine G. APD arrays and large-area APDs via a new planar process. Nucl Instrum Meth Phys Res A 2000;442:171–8.

    Article  CAS  Google Scholar 

  102. Webb PP, McIntyre RJ, Conradi J. Properties of avalanche photodiodes. RCA Rev 1974;35 2:234–78.

    Google Scholar 

  103. Lecomte R, Schmitt D, Lightstone AW, McIntyre RJ. Performance characteristics of BGO-silicon avalanche photodiode detectors for PET. IEEE Trans Nucl Sci 1985;32 1:482–6.

    Article  Google Scholar 

  104. Grazioso R, Aykac M, Casey ME, Givens G, Schmand M. APD performance in light sharing PET applications. IEEE Trans Nucl Sci 2005;52 5:1413–6.

    Article  Google Scholar 

  105. Pichler BJ, Bernecker F, Boning G, Rafecas M, Pimpl W, Schwaiger M, et al. A 4×8 APD array, consisting of two monolithic silicon wafers, coupled to a 32-channel LSO matrix for high-resolution PET. IEEE Trans Nucl Sci 2001;48 4:1391–6.

    Article  Google Scholar 

  106. Pichler BJ, Swann BK, Rochelle J, Nutt RE, Cherry SR, Siegel SB. Lutetium oxyorthosilicate block detector readout by avalanche photodiode arrays for high resolution animal PET. Phys Med Biol 2004;49:4305–19.

    Article  PubMed  CAS  Google Scholar 

  107. Maas MC, van der Laan DJ, Schaart DR, Huizenga J, Brouwer JC, Bruyndonckx P, et al. Experimental characterization of monolithic-crystal small animal PET detectors read out by APD arrays. IEEE Trans Nucl Sci 2006;53 3:1071–7.

    Article  Google Scholar 

  108. Bérard P, Bergeron M, Pepin C, Cadorette J, Tétrault MA, Viscogliosi N, et al. Development of a 64-channel APD detector module with individual pixel readout for submillimeter spatial resolution in PET. Nucl Instrum Meth Phys Res A. 2008; in press.

  109. Casey ME, Dautet H, Waechter D, Lecomte R, Eriksson L, Schmand M. An LSO block detector for PET using an avalanche photodiode array. IEEE Nucl Sci Symp Conf Rec 1998;2:1105–8.

    Google Scholar 

  110. Lecomte R, Saoudi A, Rouleau D, Dautet H, Waechter D, Andreaco M, et al. An APD-based quad scintillator detector module with pulse shape discrimination coding for PET. IEEE Nucl Sci Symp Conf Rec 1998;3:1445–7.

    Google Scholar 

  111. Krishnamoorthy S, Vaska P, Stoll S, Purschke M, Pratte JF, Woody CL, et al. A prototype Anger-type detector for PET using LSO and large-area APDs. IEEE Nucl Sci Symp Conf Rec 2005;5:2845–8.

    Article  Google Scholar 

  112. Schmitt D, Lecomte R, Lapointe M, Martel C, Carrier C, Karuta B, et al. Ultra-low noise charge sensitive preamplifier for scintillation detection with avalanche photodiodes in PET applications. IEEE Trans Nucl Sci 1987;34 1:91–6.

    Article  Google Scholar 

  113. Binkley DM, Puckett BS, Casey ME, Lecomte R, Saoudi A. A power-efficient, low-noise, wideband, integrated CMOS preamplifier for LSO/APD PET systems. IEEE Trans Nucl Sci 2000;47 3:810–7.

    Article  CAS  Google Scholar 

  114. Pichler BJ, Pimpl W, Buttler W, Kotoulas L, Boning G, Rafecas M, et al. Integrated low-noise low-power fast charge-sensitive preamplifier for avalanche photodiodes in JFET–CMOS technology. IEEE Trans Nucl Sci 2001;48 6:2370–4.

    Article  Google Scholar 

  115. Pratte JF, Robert S, De Geronimo G, O'Connor P, Stoll S, Pepin CM, et al. Preamplifiers for APD-based PET scanners. IEEE Trans Nucl Sci 2004;51 5:1979–85.

    Article  CAS  Google Scholar 

  116. Habte F, Levin CS. Study of low noise multichannel readout electronics for high sensitivity PET systems based on avalanche photodiode arrays. IEEE Trans Nucl Sci 2004;51 3:764–9.

    Article  Google Scholar 

  117. Spanoudaki VC, McElroy DP, Ziegler SI. An analog signal processing ASIC for a small animal LSO–APD PET tomograph. Nucl Instrum Meth Phys Res A 2006;564 1:451–62.

    Article  CAS  Google Scholar 

  118. Burr KC, Ivan A, LeBlanc J, Zelakiewicz S, McDaniel DL, Kim CL, et al. Evaluation of a position sensitive avalanche photodiode for PET. IEEE Trans Nucl Sci 2003;50 4:792–6.

    Article  CAS  Google Scholar 

  119. Levin CS, Foudray AMK, Olcott PD, Habte F. Investigation of position sensitive avalanche photodiodes for a new high-resolution PET detector design. IEEE Trans Nucl Sci 2004;51 3:805–10.

    Article  CAS  Google Scholar 

  120. Catana C, Wu Y, Judenhofer MS, Qi J, Pichler BJ, Cherry SR. Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. J Nucl Med 2006;47 12:1968–76.

    PubMed  Google Scholar 

  121. Renker D. New trends on photodetectors. Nucl Instrum Meth Phys Res A 2007;571:1–6.

    Article  CAS  Google Scholar 

  122. Hughes PJ, Herbert D, Stewart A, Jackson JC. Tiled silicon photomultipliers for large area, low light sensing applications. Proc SPIE 2007;6471:647112–1–8.

    Google Scholar 

  123. Stewart AG, Greene-O'Sullivan E, Herbert DJ, Saveliev V, Quinlan F, Wall L, et al. Study of the properties of new SPM detectors. Proc SPIE 2006;6119:61190A–1–10.

    Google Scholar 

  124. Renker D. Geiger-mode avalanche photodiodes, history, properties and problems. Nucl Instrum Meth Phys Res A 2006;567 1:48–56.

    Article  CAS  Google Scholar 

  125. Renker D. Progress in the development of Geiger-mode avalanche photodiodes. IEEE Nucl Sci Symp Conf Rec, 2008.

  126. Moehrs S, Del Guerra A, Herbert DJ, Mandelkern MA. A detector head design for small-animal PET with silicon photomultipliers (SiPM). Phys Med Biol 2006;51 5:1113–27.

    Article  PubMed  Google Scholar 

  127. Schaart DR, van Dam HT, Seifert S, Vinke R, Dendooven P, Löhner H, Beekman FJ. SiPM-array based PET detectors with depth-of-interaction correction. IEEE Nucl Sci Symp Conf Rec. 2008, M02-2; in press.

  128. Spanoudaki VC, Mann AB, Ottei AN, Konorov I, Torres-Espallardo I, Paul S, et al. Use of single photon counting detector arrays in combined PET/MR: characterization of LYSO-SiPM detector modules and comparison with a LSO–APD detector. J Instrum 2007;2 12:0–16.

    Article  Google Scholar 

  129. España S, Tapias G, Fraile LM, Herraiz JL, Vicente E, Udias JM, et al. Performance evaluation of SiPM detectors for PET imaging in the presence of magnetic fields. IEEE Nucl Sci Symp Conf Rec. 2008, M02-4; in press.

  130. Kim CL, Wang GC, Dolinsky S. Multi-pixel photon counters for TOF PET detector and its challenges. IEEE Nucl Sci Symp Conf Rec 2008, M02-3; in press.

  131. Vinke R. Optimizing timing resolution of SiPM sensors for use in TOF-PET detectors. 5th Conference on New Developments in Photodetection, Aix-les-Bains, France, June 15–20, 2008.

  132. Schulz V. Simultaneous time-of-flight PET/MR, MR-PET Workshop, Jülich, Germany, October 27–28, 2008.

  133. Kikuchi Y, Ishii K, Yamazaki H, Matsuyama S, Yamaguchi T, et al. Preliminary report on the development of a high resolution PET camera using semiconductor detectors. Nucl Instrum Meth Phys Res B 2005;241:727–31.

    Article  CAS  Google Scholar 

  134. Vaska P, Bolotnikov A, Carini G, Camarda G, Pratte JF, Dilmanian FA, et al. Studies of CZT for PET applications. IEEE Nucl Sci Symp Conf Rec 2005;5:2799–802.

    Article  Google Scholar 

  135. Verger L, Gros d’Aillon E, Monnet O, Montémont G, Pelliciari B. New trends in γ-ray imaging with CdZnTe/CdTe at CEA-Leti. Nucl Instrum Meth Phys Res A 2007;571:33–43.

    Article  CAS  Google Scholar 

  136. Drezet A, Monnet O, Mathy F, Montemont G, Verger L. CdZnTe detectors for small field of view positron emission tomographic imaging. Nucl Instrum Meth Phys Res A 2007;571:465–70.

    Article  CAS  Google Scholar 

  137. Ishii K, Kikuchia Y, Matsuyamaa S, Kanaia Y, Kotanib K, Ito T, et al. First achievement of less than 1 mm FWHM resolution in practical semiconductor animal PET scanner. Nucl Instrum Meth Phys Res A 2007;576:435–40.

    Article  CAS  Google Scholar 

  138. Vaska P, Dragone A, Lee W, Kim DH, Pratte JF, Cui YG, et al. A prototype CZT-based PET scanner for high resolution mouse brain imaging. Nucl Sci Symp Conf Rec 2007;5:3816–9.

    Google Scholar 

  139. Peng H, Olcott PD, Pratx G, Foudray AMK, Chinn G, Levin CS. Design study of a high-resolution breast-dedicated PET system built from cadmium zinc telluride detectors. IEEE Nucl Sci Symp Conf Rec 2007;5:3700–4.

    Google Scholar 

  140. Jeavons AP, Townsend DW, Ford NL, Kull K, Manuel A, Fischer O, et al. A high-resolution proportional chamber positron camera and its applications. IEEE Trans Nucl Sci 1978;25 1:164–73.

    Article  Google Scholar 

  141. Bateman JE, Connolly JF, Stephenson R, Tappern GJ, Flesher AC. The Rutherford Appleton Laboratory’s Mark I multiwire proportional counter positron camera. Nucl Instrum Meth Phys Res A 1984;225:209–31.

    Article  CAS  Google Scholar 

  142. Jeavons AP, Chandler RA, Dettmar CAR. A 3D HIDAC-PET camera with sub-millimetre resolution for imaging small animals. IEEE Trans Nucl Sci 1999;46 3:468–73.

    Article  Google Scholar 

  143. Missimer J, Madi Z, Honer M, Keller C, Schubiger A, Ametamey SM. Performance evaluation of the 16-module quad-HIDAC small animal PET camera. Phys Med Biol 2004;49 10:2069–81.

    Article  PubMed  Google Scholar 

  144. Honer M, Brühlmeier M, Missimer J, Schubiger AP, Ametamey SM. Dynamic imaging of striatal D2 receptors in mice using quad-HIDAC PET. J Nucl Med 2004;45 3:464–70.

    PubMed  CAS  Google Scholar 

  145. Blanco A, Carolino N, Correia CMBA, Fazendeiro L, Ferreira NC, Ferreira Marques MF, et al. RPC-PET: a new very high resolution PET technology. IEEE Trans Nucl Sci 2006;53:2489–94.

    Article  Google Scholar 

  146. Eriksson LA, Townsend DW, Conti M, Melcher CL, Eriksson M, Jakoby BW, et al. Potentials for large axial field of view positron camera systems. IEEE Nucl Sci Symp Conf Rec. 2008, NM1-5; in press.

  147. Couceiro M, Blanco A, Ferreira NC, Marques RF, Fonte P, Lopes L. RPC-PET: status and perspectives. Nucl Instrum Meth Phys Res A 2007;580:915–8.

    Article  CAS  Google Scholar 

  148. Zaklad H, Derenzo SE, Miller RA, Smadja G, Smits RG, Alvarez LW. A liquid xenon radioisotope camera. IEEE Trans Nucl Sci 1972;19:206–13.

    Article  CAS  Google Scholar 

  149. Chepel V, Lopes MI, Kuchenkov A, Marques RF, Policarpo AJPL. Performance study of liquid xenon detector for PET. Nucl Instrum Meth Phys Res A 1997;392:427–32.

    Article  CAS  Google Scholar 

  150. Gallin-Martel ML, Martin P, Mayet F, Ballon J, Barbier G, Barnoux C, et al. Experimental study of a liquid Xenon PET prototype module. Nucl Instrum Meth Phys Res A 2006;563 1:225–8.

    Article  CAS  Google Scholar 

  151. Amaudruz P, Bryman D, Kurchaninov L, Lu P, Marshall C, Martin JP. Investigation of liquid xenon detectors for PET: simultaneous reconstruction of light and charge signals from 511 keV photons. IEEE Nucl Sci Symp Conf Rec 2007;4:2889–91.

    Google Scholar 

  152. Lecomte R. Molecular PET Instrumentation and Imaging Techniques. In: Pomper M, Gelovani J, editors. Molecular imaging in oncology. New York: Informa Healthcare; 2008; p. 65–90.

  153. H. Peng, Investigation of new approaches to combined positron emission tomography and magnetic resonance imaging systems. Ph.D. thesis. University of Western Ontario, 2006.

  154. Pichler BJ, Wehrl HF, Kolb A, Judenhofer MS. Positron emission tomography/magnetic resonance imaging: the next generation of multimodality imaging? Sem Nucl Med 2008;38 3:199–208.

    Article  Google Scholar 

  155. McIntyre RJ, Webb PP, Dautet H. A short-wavelength selective reach-through avalanche photodiode. IEEE Trans Nucl Sci 1996;43 3:1341–6.

    Article  CAS  Google Scholar 

  156. Pepin CM, Bérard P, Perrot AL, Pépin C, Houde D, Lecomte R, et al. Properties of LYSO and recent LSO scintillators for phoswich PET detectors. IEEE Trans Nucl Sci 2004;51 3:789–95.

    Article  CAS  Google Scholar 

  157. Llosá G, Belcari N, Bisogni MG, Collazuol G, Marcatili S, Boscardin M, et al. First results in the application of silicon photomultiplier matrices to small animal PET. Nucl Instrum Meth Phys Res A 2008; in press.

  158. Szawlowski M, Meier D, Maehlum G, Wagenaar DJ, Patt BE. Spectroscopy and timing with multi-pixel photon counters (MPPC) and LYSO scintillators. IEEE Nucl Sci Symp Conf Rec 2007;6:4591–6.

    Google Scholar 

  159. Nassalski A, Moszyński M, Syntfeld-Każuch A, Szczęśniak T, Świderski L, Wolski D. Silicon photomultiplier as an alternative for APD in PET applications. IEEE Nucl Sci Symp Conf Rec 2008, NM1-3; in press.

  160. Verger L, Mathy F, Monnet O, Montémont G. Gamma-ray imaging with CdZnTe/CdTe detectors. Conférences Frédéric Joliot 2007: Imagerie multi modalités incluant la Tomographie par Émission de Positons, Orsay, 26–27 March 2007.

Download references

Acknowledgements

The author wishes to thank reviewers for useful comments and colleagues for providing materials for this paper. This work was supported by grants from the Canadian Institutes for Health Research and the Natural Science and Engineering Research Council of Canada.

Conflict of interest

As a co-founder of Advanced Molecular Imaging (AMI) Inc., the author has professional relationships with Gamma Medica-Ideas and GE Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Lecomte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lecomte, R. Novel detector technology for clinical PET. Eur J Nucl Med Mol Imaging 36 (Suppl 1), 69–85 (2009). https://doi.org/10.1007/s00259-008-1054-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-008-1054-0

Keywords

Navigation