Skip to main content

Advertisement

Log in

What can gallium-68 PET add to receptor and molecular imaging?

  • Editorial
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Kwekkeboom DJ, Krenning EP. Peptide receptor imaging. In: Cook JR, Maisey MN, Britton KE, Chengazi V, editors. Clinical nuclear medicine, 4th edn. New York: Oxford University Press; 2006.

    Google Scholar 

  2. Reubi JC, Schaer JC, Markwalder R, Waser B, Horisberger U, Laissue J. Distribution of somatostatin receptors in normal and neoplastic human tissues: recent advances and potential relevance. Yale J Biol Med 1997;70:471–9.

    PubMed  CAS  Google Scholar 

  3. Reubi JC. Regulatory peptide receptors as molecular targets for cancer diagnosis and therapy. Q J Nucl Med 1997;41:63–70.

    PubMed  CAS  Google Scholar 

  4. Antunes P, Ginj M, Zhang H, Waser B, Baum RP, Reubi JC, et al. Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging 2007;34:982–93.

    Article  PubMed  CAS  Google Scholar 

  5. Schonbrunn A. Somatostatin receptors present knowledge and future directions. Ann Oncol 1999;10 Suppl 2:S17–21.

    Article  PubMed  Google Scholar 

  6. Reubi JC, Schar JC, Waser B, Wenger S, Heppeler A, Schmitt JS, et al. Affinity profiles for human somatostatin receptor subtypes SST1–SST5 of somatostatin tracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med 2000;27:273–82.

    Article  PubMed  CAS  Google Scholar 

  7. de Jong M, Kwekkeboom DJ, Valkema R, Krenning EP. Endocrine: peptides. In: Cook JR, Maisey MN, Britton KE, Chengazi V, editors. Clinical nuclear medicine, 4th edn. New York: Oxford University Press; 2006.

    Google Scholar 

  8. Kwekkeboom DJ, Kooij PP, Bakker WH, Macke HR, Krenning EP. Comparison of 111In-DOTA-Tyr3-octreotide and 111In-DTPA-octreotide in the same patients: biodistribution, kinetics, organ and tumour uptake. J Nucl Med 1999;40:762–7.

    PubMed  CAS  Google Scholar 

  9. Rufini V, Calcagni ML, Baum RP. Imaging of neuroendocrine tumours. Semin Nucl Med 2006;36:228–47.

    Article  PubMed  Google Scholar 

  10. Green MS, Welch MJ. Gallium radiopharmaceutical chemistry. Int J Rad Appl Instrum B 1989;16:435–48.

    PubMed  CAS  Google Scholar 

  11. Hnatowich DJ. A review of radiopharmaceutical development with short-lived generator-produced radionuclides other than 99mTc. Int J Appl Radiat Isot 1977;28:169–81.

    Article  PubMed  CAS  Google Scholar 

  12. Hofmann M, Maecke H, Borner A, Weckesser E, Schoffski P, Oei L, et al. Biokinetics and imaging with the somatostatin receptor PET radioligand 68Ga-DOTATOC: preliminary data. Eur J Nucl Med 2001;28:1751–7.

    Article  PubMed  CAS  Google Scholar 

  13. Kowalski J, Henze M, Schuhmacher J, Macke HR, Hofmann M, Haberkorn U. Evaluation of positron emission tomography imaging using [68Ga]-DOTA-DPhe1-Tyr3-Octreotide in comparison to [111In]-DTPAOC SPECT. First results in patients with neuroendocrine tumors. Mol Imaging Biol 2003;5:42–8.

    Article  PubMed  Google Scholar 

  14. Koukouraki S, Strauss LG, Georgoulias V, Schuhmacher J, Haberkorn U, Karkavitas N, Dimitrakopoulou-Strauss A. Evaluation of the pharmacokinetics of 68Ga-DOTATOC in patients with metastatic neuroendocrine tumours scheduled for 90Y-DOTATOC therapy. Eur J Nucl Med Mol Imaging 2006;33:460–6.

    Article  PubMed  CAS  Google Scholar 

  15. Koukouraki S, Strauss LG, Georgoulias V, Eisenhut M, Haberkorn U, Dimitrakopoulou-Strauss A. Comparison of the pharmacokinetics of (68)Ga-DOTATOC and [(18)F]FDG in patients with metastatic neuroendocrine tumours scheduled for (90)Y-DOTATOC therapy. Eur J Nucl Med Mol Imaging 2006;33:1115–22.

    Article  PubMed  CAS  Google Scholar 

  16. Gabriel M, Decristoforo C, Kendler D, Dobrozemsky G, Heute D, Uprimny C, et al. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 2007;48:508–18.

    Article  PubMed  CAS  Google Scholar 

  17. Win Z, Rahman L, Murrell J, Todd J, Al-Nahhas A. The possible role of 68Ga-DOTATATE PET in malignant abdominal paraganglioma. Eur J Nucl Med Mol Imaging 2006;33:506.

    Article  PubMed  Google Scholar 

  18. Win Z, Al-Nahhas A, Towey D, Todd JF, Rubello D, Lewington V, Gishen P. 68Ga-DOTATATE PET in neuroectodermal tumours: first experience. Nucl Med Commun 2007;28:359–63.

    Article  PubMed  Google Scholar 

  19. Weiner RE, Thakur ML. Radiolabeled peptides in oncology: role in diagnosis and treatment. BioDrugs 2005;19:145–63.

    Article  PubMed  CAS  Google Scholar 

  20. Bakker WH, Breeman WA, Kwekkeboom DJ, De Jong LC, Krenning EP. Practical aspects of peptide receptor radionuclide therapy with [(177)Lu][DOTA0, Tyr3] octreotate. Q J Nucl Med Mol Imaging 2006;50:265–71.

    PubMed  CAS  Google Scholar 

  21. Koizumi M, Endo K, Kunimatsu M, Sakahara H, Nakashima T, Kawamura Y, et al. 67Ga-labeled antibodies for immunoscintigraphy and evaluation of tumor targeting of drug-antibody conjugates in mice. Cancer Res 1988;48:1189–94.

    PubMed  CAS  Google Scholar 

  22. Wagner SJ, Welch MJ. Gallium-68 labeling of albumin and albumin micro spheres. J Nucl Med 1979;20:428–33.

    PubMed  CAS  Google Scholar 

  23. Smith-Jones PM, Stolz B, Bruns C, Albert R, Reist HW, Fridrich R, et al. Gallium-67/gallium-68-[DFO]-octreotide-a potential radiopharmaceutical for PET imaging of somatostatin receptor-positive tumors: synthesis and radiolabeling in vitro and preliminary in vivo studies. J Nucl Med 1994;35:317–25.

    PubMed  CAS  Google Scholar 

  24. Kwekkeboom DJ, Mueller-Brand J, Paganelli G, Anthony LB, Pauwels S, Kvols LK, et al. Overview of results of peptide receptor radionuclide therapy with 3 radiolabeled somatostatin analogs. J Nucl Med 2005;46 Suppl 1:62S–6S.

    PubMed  CAS  Google Scholar 

  25. Breeman WA, de Jong M, Kwekkeboom DJ, Valkema R, Bakker WH, Kooij PP, et al. Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives. Eur J Nucl Med 2001;28:1421–9.

    Article  PubMed  CAS  Google Scholar 

  26. Wild D, Schmitt JS, Ginj M, Macke HR, Bernard BF, Krenning E, et al. DOTA-NOC, a high-affinity ligand of somatostatin receptor subtypes 2, 3 and 5 for labelling with various radiometals. Eur J Nucl Med Mol Imaging 2003;30:1338–47.

    Article  PubMed  CAS  Google Scholar 

  27. Wild D, Macke HR, Waser B, Reubi JC, Ginj M, Rasch H. 68Ga-DOTANOC: a first compound for PET imaging with high affinity for somatostatin receptor subtypes 2 and 5. Eur J Nucl Med Mol Imaging 2005;32:724.

    Article  PubMed  Google Scholar 

  28. Roivainen A, Tolvanen T, Salomäki S, Lendvai G, Velikyan I, Numminen P, et al. 68Ga-labeled oligonucleotides for in vivo imaging with PET. J Nucl Med 2004;45:347–55.

    PubMed  CAS  Google Scholar 

  29. Froidevaux S, Calame-Christe M, Schuhmacher J, Tanner H, Saffrich R, Henze M, Eberle AN. A gallium-labeled DOTA-alpha-melanocyte-stimulating hormone analog for PET imaging of melanoma metastases. J Nucl Med 2004;45:116–23.

    PubMed  CAS  Google Scholar 

  30. Schuhmacher J, Zhang H, Doll J, Macke HR, Matys R, Hauser H, et al. GRP receptor-targeted PET of a rat pancreas carcinoma xenograft in nude mice with a 68Ga-labeled bombesin(6–14) analog. J Nucl Med 2005;46:691–9.

    PubMed  CAS  Google Scholar 

  31. van Hagen PM, Breeman WA, Reubi JC, Postema PT, van den Anker-Lugtenburg PJ, Kwekkeboom DJ, et al. Visualization of the thymus by substance P receptor scintigraphy in man. Eur J Nucl Med 1996;23:1508–13.

    Article  PubMed  Google Scholar 

  32. de Visser M, Janssen PJ, Srinivasan A, Reubi JC, Waser B, Erion JL, et al. Stabilised 111In-labelled DTPA- and DOTA-conjugated neurotensin analogues for imaging and therapy of exocrine pancreatic cancer. Eur J Nucl Med Mol Imaging 2003;30:1134–9.

    Article  PubMed  Google Scholar 

  33. Behr TM, Behe MP. Cholecystokinin-B/gastrin receptor-targeting peptides for staging and therapy of medullary thyroid cancer and other cholecystokinin-B receptor-expressing malignancies. Semin Nucl Med 2002;32:97–109.

    Article  PubMed  Google Scholar 

  34. Ito M, Yang DJ, Mawlawi O, Mendez R, Oh CS, Azhdarinia A, et al. PET and planar imaging of tumor hypoxia with labeled metronidazole. Acad Radiol 2006;13:598–609.

    Article  PubMed  Google Scholar 

  35. Sharma V, Prior JL, Belinsky MG, Kruh GD, Piwnica-Worms D. Characterization of a 67Ga/68Ga radiopharmaceutical for SPECT and PET of MDR1 P-glycoprotein transport activity in vivo: validation in multidrug-resistant tumors and at the blood-brain barrier. J Nucl Med 2005;46:354–64.

    PubMed  CAS  Google Scholar 

  36. Mäkinen TJ, Lankinen P, Pöyhönen T, Jalava J, Aro HT, Roivainen A. Comparison of 18F-FDG and 68Ga PET imaging in the assessment of experimental osteomyelitis due to Staphylococcus aureus. Eur J Nucl Med Mol Imaging 2005;32:1259–68.

    Article  PubMed  Google Scholar 

  37. Breeman WAP, Verbruggen AM. The 68Ge/68Ga generator has high potential, but when can we use 68Ga-labelled tracers in clinical routine? Eur J Nucl Med Mol Imaging 2007;34:978–81.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adil AL-Nahhas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

AL-Nahhas, A., Win, Z., Szyszko, T. et al. What can gallium-68 PET add to receptor and molecular imaging?. Eur J Nucl Med Mol Imaging 34, 1897–1901 (2007). https://doi.org/10.1007/s00259-007-0568-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-007-0568-1

Navigation