Skip to main content
Log in

Diagnostic and prognostic value of non-invasive imaging in known or suspected coronary artery disease

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

The role of non-invasive imaging techniques in the evaluation of patients with suspected or known coronary artery disease (CAD) has increased exponentially over the past decade. The traditionally available imaging modalities, including nuclear imaging, stress echocardiography and magnetic resonance imaging (MRI), have relied on detection of CAD by visualisation of its functional consequences (i.e. ischaemia). However, extensive research is being invested in the development of non-invasive anatomical imaging using computed tomography or MRI to allow detection of (significant) atherosclerosis, eventually at a preclinical stage. In addition to establishing the presence of or excluding CAD, identification of patients at high risk for cardiac events is of paramount importance to determine post-test management, and the majority of non-invasive imaging tests can also be used for this purpose. The aim of this review is to provide an overview of the available non-invasive imaging modalities and their merits for the diagnostic and prognostic work-up in patients with suspected or known CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Schroeder S, Kopp AF, Baumbach A, Meisner C, Kuettner A, Georg C, et al. Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. J Am Coll Cardiol 2001;37(5):1430–5

    Article  PubMed  Google Scholar 

  2. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 1990;15(4):827–32

    PubMed  Google Scholar 

  3. O’Rourke RA, Brundage BH, Froelicher VF, Greenland P, Grundy SM, Hachamovitch R, et al. American College of Cardiology/American Heart Association Expert Consensus Document on electron-beam computed tomography for the diagnosis and prognosis of coronary artery disease. J Am Coll Cardiol 2000;36(1):326–40.

    Article  PubMed  Google Scholar 

  4. Haberl R, Becker A, Leber A, Knez A, Becker C, Lang C, et al. Correlation of coronary calcification and angiographically documented stenoses in patients with suspected coronary artery disease: results of 1,764 patients. J Am Coll Cardiol 2001;37(2):451–457

    Article  PubMed  Google Scholar 

  5. Manning WJ, Li W, Edelman RR. A preliminary report comparing magnetic resonance coronary angiography with conventional angiography. N Engl J Med 1993;328(12):828–32

    Article  PubMed  Google Scholar 

  6. Schuijf JD, Bax JJ, Shaw LJ, de Roos A, Lamb HJ, van der Wall EE, et al. Meta-analysis of comparative diagnostic performance of magnetic resonance imaging and multi-slice computed tomography for non-invasive coronary angiography. Am Heart J 2005 (in press)

  7. Kim WY, Danias PG, Stuber M, Flamm SD, Plein S, Nagel E, et al. Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med 2001;345(26):1863–9

    Article  PubMed  Google Scholar 

  8. Budoff MJ, Achenbach S, Duerinckx A. Clinical utility of computed tomography and magnetic resonance techniques for noninvasive coronary angiography. J Am Coll Cardiol 2003;42(11):1867–78

    Article  PubMed  Google Scholar 

  9. Nieman K, Rensing BJ, van Geuns RJ, Vos J, Pattynama PM, Krestin GP, et al. Non-invasive coronary angiography with multislice spiral computed tomography: impact of heart rate. Heart 2002;88(5):470–4

    Article  PubMed  Google Scholar 

  10. Hoffmann U, Moselewski F, Cury RC, Ferencik M, Jang IK, Diaz LJ, et al. Predictive value of 16-slice multidetector spiral computed tomography to detect significant obstructive coronary artery disease in patients at high risk for coronary artery disease: patient- versus segment-based analysis. Circulation 2004;110(17):2638–43

    Article  PubMed  Google Scholar 

  11. Cademartiri F, Mollet NR, Lemos PA, Saia F, Runza G, Midiri M, et al. Impact of coronary calcium score on diagnostic accuracy for the detection of significant coronary stenosis with multislice computed tomography angiography. Am J Cardiol 2005;95(10):1225–7

    Article  PubMed  Google Scholar 

  12. Bax JJ, Schuijf JD. Which role for multislice computed tomography in clinical cardiology? Am Heart J 2005;149(6):960–1

    Article  PubMed  Google Scholar 

  13. Nesto RW, Kowalchuk GJ. The ischemic cascade: temporal sequence of hemodynamic, electrocardiographic and symptomatic expressions of ischemia. Am J Cardiol 1987;59:23C–30C

    Article  PubMed  Google Scholar 

  14. Underwood SR, Anagnostopoulos C, Cerqueira M, Ell PJ, Flint EJ, Harbinson M, et al. Myocardial perfusion scintigraphy: the evidence. Eur J Nucl Med Mol Imaging 2004;31(2):261–91

    Article  PubMed  Google Scholar 

  15. Bateman TM, Cullom SJ. Attenuation correction single-photon emission computed tomography myocardial perfusion imaging. Semin Nucl Med 2005;35(1):37–51

    Article  PubMed  Google Scholar 

  16. DePuey EG, Rozanski A. Using gated technetium-99m-sestamibi SPECT to characterize fixed myocardial defects as infarct or artifact. J Nucl Med 1995;36(6):952–5

    PubMed  Google Scholar 

  17. Smanio PE, Watson DD, Segalla DL, Vinson EL, Smith WH, Beller GA. Value of gating of technetium-99m sestamibi single-photon emission computed tomographic imaging. J Am Coll Cardiol 1997;30(7):1687–92

    Article  PubMed  Google Scholar 

  18. Klocke FJ, Baird MG, Lorell BH, Bateman TM, Messer JV, Berman DS, et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging—executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). J Am Coll Cardiol 2003;42(7):1318–33

    Article  PubMed  Google Scholar 

  19. Jadvar H, Strauss HW, Segall GM. SPECT and PET in the evaluation of coronary artery disease. Radiographics 1999;19(4):915–26

    PubMed  Google Scholar 

  20. Nitenberg A, Valensi P, Sachs R, Dali M, Aptecar E, Attali JR. Impairment of coronary vascular reserve and ACh-induced coronary vasodilation in diabetic patients with angiographically normal coronary arteries and normal left ventricular systolic function. Diabetes 1993;42(7):1017–25

    PubMed  Google Scholar 

  21. Frielingsdorf J, Seiler C, Kaufmann P, Vassalli G, Suter T, Hess OM. Normalization of abnormal coronary vasomotion by calcium antagonists in patients with hypertension. Circulation 1996;93(7):1380–7

    PubMed  Google Scholar 

  22. Frielingsdorf J, Kaufmann P, Seiler C, Vassalli G, Suter T, Hess OM. Abnormal coronary vasomotion in hypertension: role of coronary artery disease. J Am Coll Cardiol 1996;28(4):935–41

    Article  PubMed  Google Scholar 

  23. Pitkanen OP, Raitakari OT, Niinikoski H, Nuutila P, Iida H, Voipio-Pulkki LM, et al. Coronary flow reserve is impaired in young men with familial hypercholesterolemia. J Am Coll Cardiol 1996;28(7):1705–11

    Article  PubMed  Google Scholar 

  24. Kaufmann PA, Gnecchi-Ruscone T, Schafers KP, Luscher TF, Camici PG. Low density lipoprotein cholesterol and coronary microvascular dysfunction in hypercholesterolemia. J Am Coll Cardiol 2000;36(1):103–9

    Article  PubMed  Google Scholar 

  25. Kaufmann PA, Gnecchi-Ruscone T, di Terlizzi M, Schafers KP, Luscher TF, Camici PG. Coronary heart disease in smokers: vitamin C restores coronary microcirculatory function. Circulation 2000;102(11):1233–38

    PubMed  Google Scholar 

  26. Guethlin M, Kasel AM, Coppenrath K, Ziegler S, Delius W, Schwaiger M. Delayed response of myocardial flow reserve to lipid-lowering therapy with fluvastatin. Circulation 1999;99(4):475–81

    PubMed  Google Scholar 

  27. Baller D, Notohamiprodjo G, Gleichmann U, Holzinger J, Weise R, Lehmann J. Improvement in coronary flow reserve determined by positron emission tomography after 6 months of cholesterol-lowering therapy in patients with early stages of coronary atherosclerosis. Circulation 1999;99(22):2871–5

    PubMed  Google Scholar 

  28. Ling MC, Ruddy TD, deKemp RA, Ukkonen H, Duchesne L, Higginson L, et al. Early effects of statin therapy on endothelial function and microvascular reactivity in patients with coronary artery disease. Am Heart J 2005;149(6):1137

    Article  Google Scholar 

  29. Bax JJ, Van der Wall EE, De Roos A, Poldermans D. In: Zaret Bl, Beller GA, editors. Clinical nuclear cardiology. State of the art and future directions. 3rd edn. Philadelphia: Mosby; 2005. p. 535–5

    Google Scholar 

  30. Cwajg J, Xie F, O’Leary E, Kricsfeld D, Dittrich H, Porter TR. Detection of angiographically significant coronary artery disease with accelerated intermittent imaging after intravenous administration of ultrasound contrast material. Am Heart J 2000;139(4):675–83

    Article  PubMed  Google Scholar 

  31. Heinle SK, Noblin J, Goree-Best P, Mello A, Ravad G, Mull S, et al. Assessment of myocardial perfusion by harmonic power Doppler imaging at rest and during adenosine stress: comparison with 99mTc-sestamibi SPECT imaging. Circulation 2000;102(1):55–60

    PubMed  Google Scholar 

  32. Moir S, Haluska BA, Jenkins C, Fathi R, Marwick TH. Incremental benefit of myocardial contrast to combined dipyridamole-exercise stress echocardiography for the assessment of coronary artery disease. Circulation 2004;110(9):1108–13

    Article  PubMed  Google Scholar 

  33. Olszowska M, Kostkiewicz M, Tracz W, Przewlocki T. Assessment of myocardial perfusion in patients with coronary artery disease. Comparison of myocardial contrast echocardiography and 99mTc MIBI single photon emission computed tomography. Int J Cardiol 2003;90(1):49–55

    Article  PubMed  Google Scholar 

  34. Rocchi G, Fallani F, Bracchetti G, Rapezzi C, Ferlito M, Levorato M, et al. Non-invasive detection of coronary artery stenosis: a comparison among power-Doppler contrast echo, 99Tc-sestamibi SPECT and echo wall-motion analysis. Coron Artery Dis 2003;14(3):239–45

    Article  PubMed  Google Scholar 

  35. Shimoni S, Zoghbi WA, Xie F, Kricsfeld D, Iskander S, Gobar L, et al. Real-time assessment of myocardial perfusion and wall motion during bicycle and treadmill exercise echocardiography: comparison with single photon emission computed tomography. J Am Coll Cardiol 2001;37(3):741–7

    Article  PubMed  Google Scholar 

  36. Wei K, Crouse L, Weiss J, Villanueva F, Schiller NB, Naqvi TZ, et al. Comparison of usefulness of dipyridamole stress myocardial contrast echocardiography to technetium-99m sestamibi single-photon emission computed tomography for detection of coronary artery disease (PB127 Multicenter Phase 2 Trial results). Am J Cardiol 2003;91(11):1293–8

    Article  PubMed  Google Scholar 

  37. Paetsch I, Jahnke C, Wahl A, Gebker R, Neuss M, Fleck E, et al. Comparison of dobutamine stress magnetic resonance, adenosine stress magnetic resonance, and adenosine stress magnetic resonance perfusion. Circulation 2004;110(7):835–42

    Article  PubMed  Google Scholar 

  38. Giang TH, Nanz D, Coulden R, Friedrich M, Graves M, Al Saadi N, et al. Detection of coronary artery disease by magnetic resonance myocardial perfusion imaging with various contrast medium doses: first European multi-centre experience. Eur Heart J 2004;25(18):1657–65

    Article  PubMed  Google Scholar 

  39. Wolff SD, Schwitter J, Coulden R, Friedrich MG, Bluemke DA, Biederman RW, et al. Myocardial first-pass perfusion magnetic resonance imaging: a multicenter dose-ranging study. Circulation 2004;110(6):732–7

    Article  PubMed  Google Scholar 

  40. Pletcher MJ, Tice JA, Pignone M, Browner WS. Using the coronary artery calcium score to predict coronary heart disease events: a systematic review and meta-analysis. Arch Intern Med 2004;164(12):1285–92

    Article  PubMed  Google Scholar 

  41. Shaw LJ, Raggi P, Schisterman E, Berman DS, Callister TQ. Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology 2003;228(3):826–33

    PubMed  Google Scholar 

  42. Callister TQ, Raggi P, Cooil B, Lippolis NJ, Russo DJ. Effect of HMG-CoA reductase inhibitors on coronary artery disease as assessed by electron-beam computed tomography. N Engl J Med 1998;339(27):1972–8

    Article  PubMed  Google Scholar 

  43. Shaw LJ, Iskandrian AE. Prognostic value of gated myocardial perfusion SPECT. J Nucl Cardiol 2004;11(2):171–85

    Article  PubMed  Google Scholar 

  44. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med 2002;346(11):793–801

    Article  PubMed  Google Scholar 

  45. Navare SM, Mather JF, Shaw LJ, Fowler MS, Heller GV. Comparison of risk stratification with pharmacologic and exercise stress myocardial perfusion imaging: a meta-analysis. J Nucl Cardiol 2004;11(5):551–61

    Article  PubMed  Google Scholar 

  46. White HD, Norris RM, Brown MA, Takayama M, Maslowski A, Bass NM, et al. Effect of intravenous streptokinase on left ventricular function and early survival after acute myocardial infarction. N Engl J Med 1987;317(14):850–5

    PubMed  Google Scholar 

  47. Sharir T, Germano G, Kang X, Lewin HC, Miranda R, Cohen I, et al. Prediction of myocardial infarction versus cardiac death by gated myocardial perfusion SPECT: risk stratification by the amount of stress-induced ischemia and the poststress ejection fraction. J Nucl Med 2001;42(6):831–7

    PubMed  Google Scholar 

  48. Sharir T, Germano G, Kavanagh PB, Lai S, Cohen I, Lewin HC, et al. Incremental prognostic value of post-stress left ventricular ejection fraction and volume by gated myocardial perfusion single photon emission computed tomography. Circulation 1999;100(10):1035–42

    PubMed  Google Scholar 

  49. Abidov A, Bax JJ, Hayes SW, Hachamovitch R, Cohen I, Gerlach J, et al. Transient ischemic dilation ratio of the left ventricle is a significant predictor of future cardiac events in patients with otherwise normal myocardial perfusion SPECT. J Am Coll Cardiol 2003;42(10):1818–25

    Article  PubMed  Google Scholar 

  50. Marwick TH, Shan K, Patel S, Go RT, Lauer MS. Incremental value of rubidium-82 positron emission tomography for prognostic assessment of known or suspected coronary artery disease. Am J Cardiol 1997;80(7):865–70

    Article  PubMed  Google Scholar 

  51. Marwick TH, Case C, Sawada S, Rimmerman C, Brenneman P, Kovacs R, et al. Prediction of mortality using dobutamine echocardiography. J Am Coll Cardiol 2001;37(3):754–60

    Article  PubMed  Google Scholar 

  52. Elhendy A, Mahoney DW, Khandheria BK, Paterick TE, Burger KN, Pellikka PA. Prognostic significance of the location of wall motion abnormalities during exercise echocardiography. J Am Coll Cardiol 2002;40(9):1623–9

    Article  PubMed  Google Scholar 

  53. Sozzi FB, Elhendy A, Roelandt JR, van Domburg RT, Schinkel AF, Vourvouri EC, et al. Prognostic value of dobutamine stress echocardiography in patients with diabetes. Diabetes Care 2003;26(4):1074–8

    PubMed  Google Scholar 

  54. D’Andrea A, Severino S, Caso P, De Simone L, Liccardo B, Forni A, et al. Prognostic value of pharmacological stress echocardiography in diabetic patients. Eur J Echocardiogr 2003;4(3):202–8

    Article  PubMed  Google Scholar 

  55. Sozzi FB, Elhendy A, Roelandt JR, van Domburg RT, Schinkel AF, Vourvouri EC, et al. Long-term prognosis after normal dobutamine stress echocardiography. Am J Cardiol 2003;92(11):1267–70

    Article  PubMed  Google Scholar 

  56. Yao SS, Qureshi E, Sherrid MV, Chaudhry FA. Practical applications in stress echocardiography: risk stratification and prognosis in patients with known or suspected ischemic heart disease. J Am Coll Cardiol 2003;42(6):1084–90

    Article  PubMed  Google Scholar 

  57. Chung G, Krishnamani R, Senior R. Prognostic value of normal stress echocardiogram in patients with suspected coronary artery disease—a British general hospital experience. Int J Cardiol 2004;94(2–3):181–6

    Article  PubMed  Google Scholar 

  58. Sicari R, Pasanisi E, Venneri L, Landi P, Cortigiani L, Picano E. Stress echo results predict mortality: a large-scale multicenter prospective international study. J Am Coll Cardiol 2003;41(4):589–95

    Article  PubMed  Google Scholar 

  59. Chuah SC, Pellikka PA, Roger VL, McCully RB, Seward JB. Role of dobutamine stress echocardiography in predicting outcome in 860 patients with known or suspected coronary artery disease. Circulation 1998;97(15):1474–80

    PubMed  Google Scholar 

  60. Marwick TH, Case C, Vasey C, Allen S, Short L, Thomas JD. Prediction of mortality by exercise echocardiography: a strategy for combination with the Duke treadmill score. Circulation 2001;103(21):2566–71

    PubMed  Google Scholar 

  61. Marwick TH, Case C, Poldermans D, Boersma E, Bax J, Sawada S, et al. A clinical and echocardiographic score for assigning risk of major events after dobutamine echocardiograms. J Am Coll Cardiol 2004;43(11):2102–7

    Article  PubMed  Google Scholar 

  62. Marwick TH, Case C, Short L, Thomas JD. Prediction of mortality in patients without angina: use of an exercise score and exercise echocardiography. Eur Heart J 2003;24(13):1223–30

    Article  PubMed  Google Scholar 

  63. Cortigiani L, Picano E, Landi P, Previtali M, Pirelli S, Bellotti P, et al. Value of pharmacologic stress echocardiography in risk stratification of patients with single-vessel disease: a report from the Echo-Persantine and Echo-Dobutamine International Cooperative Studies. J Am Coll Cardiol 1998;32(1):69–74

    Article  PubMed  Google Scholar 

  64. Shaw LJ, Vasey C, Sawada S, Rimmerman C, Marwick TH. Impact of gender on risk stratification by exercise and dobutamine stress echocardiography: long-term mortality in 4234 women and 6898 men. Eur Heart J 2005;26(5):447–56

    Article  PubMed  Google Scholar 

  65. Hundley WG, Morgan TM, Neagle CM, Hamilton CA, Rerkpattanapipat P, Link KM. Magnetic resonance imaging determination of cardiac prognosis. Circulation 2002;106:2328–33

    Article  PubMed  Google Scholar 

  66. Namdar M, Hany TF, Koepfli P, Siegrist PT, Burger C, Wyss CA, et al. Integrated PET/CT for the assessment of coronary artery disease: a feasibility study. J Nucl Med 2005;46(6):930–5

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by The Netherlands Heart Foundation, The Hague, The Netherlands, grant 2002B105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Bax.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuijf, J.D., Poldermans, D., Shaw, L.J. et al. Diagnostic and prognostic value of non-invasive imaging in known or suspected coronary artery disease. Eur J Nucl Med Mol Imaging 33, 93–104 (2006). https://doi.org/10.1007/s00259-005-1965-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-005-1965-y

Keywords

Navigation