Skip to main content

Advertisement

Log in

Molecular targeting of angiogenesis for imaging and therapy

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Angiogenesis, i.e. the proliferation of new blood vessels from pre-existing ones, is an underlying process in many human diseases, including cancer, blinding ocular disorders and rheumatoid arthritis. The ability to selectively target and interfere with neovascularisation would potentially be useful in the diagnosis and treatment of angiogenesis-related diseases. This review presents the authors’ views on some of the most relevant markers of angiogenesis described to date, as well as on specific ligands which have been characterised in pre-clinical animal models and/or clinical studies. Furthermore, we present an overview on technologies which are likely to have an impact on the way molecular targeting of angiogenesis is performed in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bosslet K, Straub R, Blumrich M, et al. Elucidation of the mechanism enabling tumor selective prodrug monotherapy. Cancer Res 1998;58:1195–201.

    CAS  PubMed  Google Scholar 

  2. Jain RK. Delivery of molecular and cellular medicine to solid tumors. Adv Drug Deliv Rev 2001;46:149–68.

    Article  CAS  PubMed  Google Scholar 

  3. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975;256:495–7.

    CAS  PubMed  Google Scholar 

  4. Bischoff J. Approaches to studying cell adhesion molecules in angiogenesis. Trends Cell Biol 1995;5:69–74.

    Article  CAS  PubMed  Google Scholar 

  5. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995;1:27–31.

    CAS  PubMed  Google Scholar 

  6. Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 2003;9:677–84.

    Article  CAS  PubMed  Google Scholar 

  7. Carmeliet P. Angiogenesis in health and disease. Nat Med 2003;9:653–60.

    Article  CAS  PubMed  Google Scholar 

  8. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003;9:669–76.

    Article  CAS  PubMed  Google Scholar 

  9. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004;350:2335–42.

    Article  CAS  PubMed  Google Scholar 

  10. Cobleigh MA, Langmuir VK, Sledge GW, et al. A phase I/II dose-escalation trial of bevacizumab in previously treated metastatic breast cancer. Semin Oncol 2003;30:117–24.

    CAS  PubMed  Google Scholar 

  11. Brekke OH, Sandlie I. Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat Rev Drug Discov 2003;2:52–62.

    Article  CAS  PubMed  Google Scholar 

  12. Hudson PJ, Souriau C. Engineered antibodies. Nat Med 2003;9:129–34.

    Article  CAS  PubMed  Google Scholar 

  13. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285:1182–6.

    CAS  PubMed  Google Scholar 

  14. Folkman J. Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg 1972;175:409–16.

    CAS  PubMed  Google Scholar 

  15. Hanahan D. A flanking attack on cancer. Nat Med 1998;4:13–4.

    CAS  PubMed  Google Scholar 

  16. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer 2003;3:401–10.

    Article  CAS  PubMed  Google Scholar 

  17. Forsythe JA, Jiang BH, Iyer NV, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 1996;16:4604–13.

    CAS  PubMed  Google Scholar 

  18. Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIF-alpha to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001;292:468–72.

    CAS  PubMed  Google Scholar 

  19. Ivan M, Kondo K, Yang H, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 2001;292:464–8.

    CAS  PubMed  Google Scholar 

  20. Dibbens JA, Miller DL, Damert A, et al. Hypoxic regulation of vascular endothelial growth factor mRNA stability requires the cooperation of multiple RNA elements. Mol Biol Cell 1999;10:907–19.

    CAS  PubMed  Google Scholar 

  21. Tenan M, Fulci G, Albertoni M, et al. Thrombospondin-1 is downregulated by anoxia and suppresses tumorigenicity of human glioblastoma cells. J Exp Med 2000;191:1789–98.

    Article  CAS  PubMed  Google Scholar 

  22. Konerding MA, Fait E, Gaumann A. 3D microvascular architecture of pre-cancerous lesions and invasive carcinomas of the colon. Br J Cancer 2001;84:1354–62.

    Article  CAS  PubMed  Google Scholar 

  23. Roberts WG, Palade GE. Neovasculature induced by vascular endothelial growth factor is fenestrated. Cancer Res 1997;57:765–72.

    CAS  PubMed  Google Scholar 

  24. Jain RK. Transport of molecules across tumor vasculature. Cancer Metastasis Rev 1987;6:559–93.

    CAS  PubMed  Google Scholar 

  25. Hashizume H, Baluk P, Morikawa S, et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 2000;156:1363–80.

    CAS  PubMed  Google Scholar 

  26. Ferrara N, Hillan KJ, Gerber HP, Novotny W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 2004;3:391–400.

    Article  CAS  PubMed  Google Scholar 

  27. Lee P, Wang CC, Adamis AP. Ocular neovascularization: an epidemiologic review. Surv Ophthalmol 1998;43:245–69.

    Article  CAS  PubMed  Google Scholar 

  28. Ishida S, Yamashiro K, Usui T, et al. Leukocytes mediate retinal vascular remodeling during development and vaso-obliteration in disease. Nat Med 2003;9:781–8.

    Article  CAS  PubMed  Google Scholar 

  29. McLeod DS, Lefer DJ, Merges C, Lutty GA. Enhanced expression of intracellular adhesion molecule-1 and P-selectin in the diabetic human retina and choroid. Am J Pathol 1995;147:642–53.

    CAS  PubMed  Google Scholar 

  30. Diacovo TG, Puri KD, Warnock RA, Springer TA, von Andrian UH. Platelet-mediated lymphocyte delivery to high endothelial venules. Science 1996;273:252–5.

    CAS  PubMed  Google Scholar 

  31. Malecaze F, Clamens S, Simorre-Pinatel V, et al. Detection of vascular endothelial growth factor messenger RNA and vascular endothelial growth factor-like activity in proliferative diabetic retinopathy. Arch Ophthalmol 1994;112:1476–82.

    CAS  PubMed  Google Scholar 

  32. Miller JW, Adamis AP, Shima DT, et al. Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am J Pathol 1994;145:574–84.

    CAS  PubMed  Google Scholar 

  33. Dawson DW, Volpert OV, Gillis P, et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 1999;285:245–8.

    Article  CAS  PubMed  Google Scholar 

  34. Ogata N, Nishikawa M, Nishimura T, Mitsuma Y, Matsumura M. Unbalanced vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor in diabetic retinopathy. Am J Ophthalmol 2002;134:348–53.

    Article  CAS  PubMed  Google Scholar 

  35. Aiello LP, Pierce EA, Foley ED, et al. Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci U S A 1995;92:10457–61.

    CAS  PubMed  Google Scholar 

  36. Friedlander M, Theesfeld CL, Sugita M, et al. Involvement of integrins alpha v beta 3 and alpha v beta 5 in ocular neovascular diseases. Proc Natl Acad Sci U S A 1996;93:9764–9.

    Article  CAS  PubMed  Google Scholar 

  37. Greaves MW, Weinstein GD. Treatment of psoriasis. N Engl J Med 1995;332:581–8.

    Article  CAS  PubMed  Google Scholar 

  38. Creamer D, Sullivan D, Bicknell R, Barker J. Angiogenesis in psoriasis. Angiogenesis 2002;5:231–6.

    Article  CAS  PubMed  Google Scholar 

  39. Detmar M, Brown LF, Claffey KP, et al. Overexpression of vascular permeability factor/vascular endothelial growth factor and its receptors in psoriasis. J Exp Med 1994;180:1141–6.

    Article  CAS  PubMed  Google Scholar 

  40. Nickoloff BJ, Mitra RS, Varani J, Dixit VM, Polverini PJ. Aberrant production of interleukin-8 and thrombospondin-1 by psoriatic keratinocytes mediates angiogenesis. Am J Pathol 1994;144:820–8.

    CAS  PubMed  Google Scholar 

  41. Detmar M. The role of VEGF and thrombospondins in skin angiogenesis. J Dermatol Sci 2000;24(Suppl 1):S78–84.

    Article  CAS  PubMed  Google Scholar 

  42. Creamer D, Allen M, Sousa A, Poston R, Barker J. Altered vascular endothelium integrin expression in psoriasis. Am J Pathol 1995;147:1661–7.

    CAS  PubMed  Google Scholar 

  43. Kuroda K, Sapadin A, Shoji T, Fleischmajer R, Lebwohl M. Altered expression of angiopoietins and Tie2 endothelium receptor in psoriasis. J Invest Dermatol 2001;116:713–20.

    Article  CAS  PubMed  Google Scholar 

  44. Elder JT, Fisher GJ, Lindquist PB, et al. Overexpression of transforming growth factor alpha in psoriatic epidermis. Science 1989;243:811–4.

    CAS  PubMed  Google Scholar 

  45. Villadsen LS, Schuurman J, Beurskens F, et al. Resolution of psoriasis upon blockade of IL-15 biological activity in a xenograft mouse model. J Clin Invest 2003;112:1571–80.

    Article  CAS  PubMed  Google Scholar 

  46. Folkman J. Angiogenesis in psoriasis: therapeutic implications. J Invest Dermatol 1972;59:40–3.

    Article  CAS  PubMed  Google Scholar 

  47. Hernandez GL, Volpert OV, Iniguez MA, et al. Selective inhibition of vascular endothelial growth factor-mediated angiogenesis by cyclosporin A: roles of the nuclear factor of activated T cells and cyclooxygenase 2. J Exp Med 2001;193:607–20.

    Article  CAS  PubMed  Google Scholar 

  48. Diaz BV, Lenoir MC, Ladoux A, et al. Regulation of vascular endothelial growth factor expression in human keratinocytes by retinoids. J Biol Chem 2000;275:642–50.

    Article  CAS  PubMed  Google Scholar 

  49. Ballara S, Taylor PC, Reusch P, et al. Raised serum vascular endothelial growth factor levels are associated with destructive change in inflammatory arthritis. Arthritis Rheum 2001;44:2055–64.

    Article  CAS  PubMed  Google Scholar 

  50. Grosios K, Wood J, Esser R, Raychaudhuri A, Dawson J. Angiogenesis inhibition by the novel VEGF receptor tyrosine kinase inhibitor, PTK787/ZK222584, causes significant anti-arthritic effects in models of rheumatoid arthritis. Inflamm Res 2004;53:133–42.

    Article  CAS  PubMed  Google Scholar 

  51. Szekanecz Z, Szegedi G, Koch AE. Angiogenesis in rheumatoid arthritis: pathogenic and clinical significance. J Investig Med 1998;46:27–41.

    CAS  PubMed  Google Scholar 

  52. Koch AE. Review: angiogenesis: implications for rheumatoid arthritis. Arthritis Rheum 1998;41:951–62.

    Article  CAS  PubMed  Google Scholar 

  53. Maini RN, Taylor PC. Anti-cytokine therapy for rheumatoid arthritis. Annu Rev Med 2000;51:207–29.

    Article  CAS  PubMed  Google Scholar 

  54. Feldmann M, Brennan FM, Paleolog E, et al. Anti-TNFalpha therapy of rheumatoid arthritis: what can we learn about chronic disease? Novartis Found Symp 2000;256:53–69; discussion 69–73, 106–111, 266–9.

    Article  PubMed  Google Scholar 

  55. Zardi L, Carnemolla B, Siri A, et al. Transformed human cells produce a new fibronectin isoform by preferential alternative splicing of a previously unobserved exon. EMBO J 1987;6:2337–42.

    CAS  PubMed  Google Scholar 

  56. Carnemolla B, Balza E, Siri A, et al. A tumor-associated fibronectin isoform generated by alternative splicing of messenger RNA precursors. J Cell Biol 1989;108:1139–48.

    Article  CAS  PubMed  Google Scholar 

  57. Carnemolla B, Leprini A, Allemanni G, Saginati M, Zardi L. The inclusion of the type III repeat ED-B in the fibronectin molecule generates conformational modifications that unmask a cryptic sequence. J Biol Chem 1992;267:24689–92.

    CAS  PubMed  Google Scholar 

  58. Peters JH, Trevithick JE, Johnson P, Hynes RO. Expression of the alternatively spliced EIIIB segment of fibronectin. Cell Adhes Commun 1995;3:67–89.

    CAS  PubMed  Google Scholar 

  59. Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR. Making antibodies by phage display technology. Annu Rev Immunol 1994;12:433–55.

    Article  CAS  PubMed  Google Scholar 

  60. Viti F, Nilsson F, Demartis S, Huber A, Neri D. Design and use of phage display libraries for the selection of antibodies and enzymes. Methods Enzymol 2000;326:480–505.

    Article  CAS  PubMed  Google Scholar 

  61. Giovannoni L, Viti F, Zardi L, Neri D. Isolation of anti-angiogenesis antibodies from a large combinatorial repertoire by colony filter screening. Nucleic Acids Res 2001;29:E27.

    Article  CAS  PubMed  Google Scholar 

  62. Carnemolla B, Neri D, Castellani P, et al. Phage antibodies with pan-species recognition of the oncofoetal angiogenesis marker fibronectin ED-B domain. Int J Cancer 1996;68:397–405.

    Article  CAS  PubMed  Google Scholar 

  63. Neri D, Carnemolla B, Nissim A, et al. Targeting by affinity-matured recombinant antibody fragments of an angiogenesis associated fibronectin isoform. Nat Biotechnol 1997;15:1271–5.

    CAS  PubMed  Google Scholar 

  64. Pini A, Viti F, Santucci A, et al. Design and use of a phage display library. Human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel. J Biol Chem 1998;273:21769–76.

    Article  CAS  PubMed  Google Scholar 

  65. Viti F, Tarli L, Giovannoni L, Zardi L, Neri D. Increased binding affinity and valence of recombinant antibody fragments lead to improved targeting of tumoral angiogenesis. Cancer Res 1999;59:347–52.

    CAS  PubMed  Google Scholar 

  66. Tarli L, Balza E, Viti F, et al. A high-affinity human antibody that targets tumoral blood vessels. Blood 1999;94:192–8.

    CAS  PubMed  Google Scholar 

  67. Demartis S, Tarli L, Borsi L, Zardi L, Neri D. Selective targeting of tumour neovasculature by a radiohalogenated human antibody fragment specific for the ED-B domain of fibronectin. Eur J Nucl Med 2001;28:534–9.

    Article  CAS  PubMed  Google Scholar 

  68. Santimaria M, Moscatelli G, Viale GL, et al. Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin Cancer Res 2003;9:571–9.

    CAS  PubMed  Google Scholar 

  69. Borsi L, Balza E, Bestagno M, et al. Selective targeting of tumoral vasculature: comparison of different formats of an antibody (L19) to the ED-B domain of fibronectin. Int J Cancer 2002;102:75–85.

    Article  CAS  PubMed  Google Scholar 

  70. Birchler M, Viti F, Zardi L, Spiess B, Neri D. Selective targeting and photocoagulation of ocular angiogenesis mediated by a phage-derived human antibody fragment. Nat Biotechnol 1999;17:984–88.

    Article  CAS  PubMed  Google Scholar 

  71. Marty C, Odermatt B, Schott H, et al. Cytotoxic targeting of F9 teratocarcinoma tumours with anti-ED-B fibronectin scFv antibody modified liposomes. Br J Cancer 2002;87:106–12.

    Article  CAS  PubMed  Google Scholar 

  72. Nilsson F, Kosmehl H, Zardi L, Neri D. Targeted delivery of tissue factor to the ED-B domain of fibronectin, a marker of angiogenesis, mediates the infarction of solid tumors in mice. Cancer Res 2001;61:711–6.

    CAS  PubMed  Google Scholar 

  73. Carnemolla B, Borsi L, Balza E, et al. Enhancement of the antitumor properties of interleukin-2 by its targeted delivery to the tumor blood vessel extracellular matrix. Blood 2002;99:1659–65.

    Article  PubMed  Google Scholar 

  74. Halin C, Niesner U, Villani ME, Zardi L, Neri D. Tumor-targeting properties of antibody-vascular endothelial growth factor fusion proteins. Int J Cancer 2002;102:109–16.

    Article  CAS  PubMed  Google Scholar 

  75. Halin C, Rondini S, Nilsson F, et al. Enhancement of the antitumor activity of interleukin-12 by targeted delivery to neovasculature. Nat Biotechnol 2002;20:264–9.

    Article  CAS  PubMed  Google Scholar 

  76. Borsi L, Balza E, Carnemolla B, et al. Selective targeted delivery of TNFalpha to tumor blood vessels. Blood 2003;102:4384–92.

    Article  CAS  PubMed  Google Scholar 

  77. Halin C, Gafner V, Villani ME, et al. Synergistic therapeutic effects of a tumor targeting antibody fragment, fused to interleukin 12 and to tumor necrosis factor alpha. Cancer Res 2003;63:3202–10.

    CAS  PubMed  Google Scholar 

  78. Heinis C, Alessi P, Neri D. Engineering a thermostable human prolyl endopeptidase for antibody-directed enzyme prodrug therapy. Biochemistry 2004;43:6293–303.

    Article  CAS  PubMed  Google Scholar 

  79. Niesner U, Halin C, Lozzi L, et al. Quantitation of the tumor-targeting properties of antibody fragments conjugated to cell-permeating HIV-1 TAT peptides. Bioconjug Chem 2002;13:729–36.

    Article  CAS  PubMed  Google Scholar 

  80. Melkko S, Halin C, Borsi L, Zardi L, Neri D. An antibody-calmodulin fusion protein reveals a functional dependence between macromolecular isoelectric point and tumor targeting performance. Int J Radiat Oncol Biol Phys 2002;54:1485–90.

    Article  CAS  PubMed  Google Scholar 

  81. Castellani P, Viale G, Dorcaratto A, et al. The fibronectin isoform containing the ED-B oncofetal domain: a marker of angiogenesis. Int J Cancer 1994;59:612–8.

    CAS  PubMed  Google Scholar 

  82. Kaczmarek J, Castellani P, Nicolo G, et al. Distribution of oncofetal fibronectin isoforms in normal, hyperplastic and neoplastic human breast tissues. Int J Cancer 1994;59:11–6.

    CAS  PubMed  Google Scholar 

  83. Castellani P, Borsi L, Carnemolla B, et al. Differentiation between high- and low-grade astrocytoma using a human recombinant antibody to the extra domain-B of fibronectin. Am J Pathol 2002;161:1695–700.

    CAS  PubMed  Google Scholar 

  84. Birchler MT, Milisavlijevic D, Pfaltz M, et al. Expression of the extra domain B of fibronectin, a marker of angiogenesis, in head and neck tumors. Laryngoscope 2003;113:1231–7.

    Article  CAS  PubMed  Google Scholar 

  85. Kosmehl H, Berndt A, Strassburger S, et al. Distribution of laminin and fibronectin isoforms in oral mucosa and oral squamous cell carcinoma. Br J Cancer 1999;81:1071–9.

    Article  CAS  PubMed  Google Scholar 

  86. Nicolo M, Biro A, Cardillo-Piccolino F, et al. Expression of extradomain-B-containing fibronectin in subretinal choroidal neovascular membranes. Am J Ophthalmol 2003;135:7–13.

    Article  CAS  PubMed  Google Scholar 

  87. Kriegsmann J, Berndt A, Hansen T, et al. Expression of fibronectin splice variants and oncofetal glycosylated fibronectin in the synovial membranes of patients with rheumatoid arthritis and osteoarthritis. Rheumatol Int 2004;24:25–33.

    Article  CAS  PubMed  Google Scholar 

  88. Ffrench-Constant C, Van de Water L, Dvorak HF, Hynes RO. Reappearance of an embryonic pattern of fibronectin splicing during wound healing in the adult rat. J Cell Biol 1989;109:903–14.

    Article  CAS  PubMed  Google Scholar 

  89. Carnemolla B, Borsi L, Bannikov G, Troyanovsky S, Zardi L. Comparison of human tenascin expression in normal, simian-virus-40-transformed and tumor-derived cell lines. Eur J Biochem 1992;205:561–7.

    CAS  PubMed  Google Scholar 

  90. Borsi L, Carnemolla B, Nicolo G, et al. Expression of different tenascin isoforms in normal, hyperplastic and neoplastic human breast tissues. Int J Cancer 1992;52:688–92.

    CAS  PubMed  Google Scholar 

  91. Paganelli G, Magnani P, Zito F, et al. Pre-targeted immunodetection in glioma patients: tumour localization and single-photon emission tomography imaging of [99mTc]PnAO-biotin. Eur J Nucl Med 1994;21:314–21.

    CAS  PubMed  Google Scholar 

  92. Riva P, Arista A, Franceschi G, et al. Local treatment of malignant gliomas by direct infusion of specific monoclonal antibodies labeled with 131I: comparison of the results obtained in recurrent and newly diagnosed tumors. Cancer Res 1995;55:5952s–6s.

    CAS  PubMed  Google Scholar 

  93. Riva P, Arista A, Sturiale C, et al. Treatment of intracranial human glioblastoma by direct intratumoral administration of 131I-labelled anti-tenascin monoclonal antibody BC-2. Int J Cancer 1992;51:7–13.

    CAS  PubMed  Google Scholar 

  94. Reardon DA, Akabani G, Coleman RE, et al. Phase II trial of murine 131I-labeled antitenascin monoclonal antibody 81C6 administered into surgically created resection cavities of patients with newly diagnosed malignant gliomas. J Clin Oncol 2002;20:1389–97.

    Article  CAS  PubMed  Google Scholar 

  95. Bigner DD, Brown MT, Friedman AH, et al. Iodine-131-labeled antitenascin monoclonal antibody 81C6 treatment of patients with recurrent malignant gliomas: phase I trial results. J Clin Oncol 1998;16:2202–12.

    CAS  PubMed  Google Scholar 

  96. Carnemolla B, Castellani P, Ponassi M, et al. Identification of a glioblastoma-associated tenascin-C isoform by a high affinity recombinant antibody. Am J Pathol 1999;154:1345–52.

    CAS  PubMed  Google Scholar 

  97. Friedlander M, Brooks PC, Shaffer RW, et al. Definition of two angiogenic pathways by distinct alpha v integrins. Science 1995;270:1500–2.

    CAS  PubMed  Google Scholar 

  98. Sipkins DA, Cheresh DA, Kazemi MR, et al. Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med 1998;4:623–6.

    CAS  PubMed  Google Scholar 

  99. Brooks PC, Montgomery AM, Rosenfeld M, et al. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 1994;79:1157–64.

    Article  CAS  PubMed  Google Scholar 

  100. Max R, Gerritsen RR, Nooijen PT, et al. Immunohistochemical analysis of integrin alpha vbeta3 expression on tumor-associated vessels of human carcinomas. Int J Cancer 1997;71:320–4.

    Article  CAS  PubMed  Google Scholar 

  101. Posey JA, Khazaeli MB, DelGrosso A, et al. A pilot trial of Vitaxin, a humanized anti-vitronectin receptor (anti alpha v beta 3) antibody in patients with metastatic cancer. Cancer Biother Radiopharm 2001;16:125–32.

    Article  CAS  PubMed  Google Scholar 

  102. Horoszewicz JS, Kawinski E, Murphy GP. Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients. Anticancer Res 1987;7:927–35.

    CAS  PubMed  Google Scholar 

  103. Wright GL Jr, Grob BM, Haley C, et al. Upregulation of prostate-specific membrane antigen after androgen-deprivation therapy. Urology 1996;48:326–34.

    Article  PubMed  Google Scholar 

  104. Xiao Z, Adam BL, Cazares LH, et al. Quantitation of serum prostate-specific membrane antigen by a novel protein biochip immunoassay discriminates benign from malignant prostate disease. Cancer Res 2001;61:6029–33.

    CAS  PubMed  Google Scholar 

  105. Liu H, Moy P, Kim S, et al. Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. Cancer Res 1997;57:3629–34.

    CAS  PubMed  Google Scholar 

  106. Chang SS, O’Keefe DS, Bacich DJ, et al. Prostate-specific membrane antigen is produced in tumor-associated neovasculature. Clin Cancer Res 1999;5:2674–81.

    CAS  PubMed  Google Scholar 

  107. Chang SS, Reuter VE, Heston WD, et al. Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Res 1999;59:3192–8.

    CAS  PubMed  Google Scholar 

  108. Bander NH, Trabulsi EJ, Kostakoglu L, et al. Targeting metastatic prostate cancer with radiolabeled monoclonal antibody J591 to the extracellular domain of prostate specific membrane antigen. J Urol 2003;170:1717–21.

    CAS  PubMed  Google Scholar 

  109. Bander NH, Nanus DM, Milowsky MI, et al. Targeted systemic therapy of prostate cancer with a monoclonal antibody to prostate-specific membrane antigen. Semin Oncol 2003;30:667–76.

    CAS  PubMed  Google Scholar 

  110. Wang JM, Kumar S, Pye D, et al. A monoclonal antibody detects heterogeneity in vascular endothelium of tumours and normal tissues. Int J Cancer 1993;54:363–70.

    CAS  PubMed  Google Scholar 

  111. Burrows FJ, Derbyshire EJ, Tazzari PL, et al. Up-regulation of endoglin on vascular endothelial cells in human solid tumors: implications for diagnosis and therapy. Clin Cancer Res 1995;1:1623–34.

    CAS  PubMed  Google Scholar 

  112. Balza E, Castellani P, Zijlstra A, et al. Lack of specificity of endoglin expression for tumor blood vessels. Int J Cancer 2001;94:579–85.

    Article  CAS  PubMed  Google Scholar 

  113. Matsubara S, Bourdeau A, terBrugge KG, Wallace C, Letarte M. Analysis of endoglin expression in normal brain tissue and in cerebral arteriovenous malformations. Stroke 2000;31:2653–60.

    CAS  PubMed  Google Scholar 

  114. Bredow S, Lewin M, Hofmann B, Marecos E, Weissleder R. Imaging of tumour neovasculature by targeting the TGF-beta binding receptor endoglin. Eur J Cancer 2000;36:675–81.

    Article  CAS  PubMed  Google Scholar 

  115. Fonsatti E, Jekunen AP, Kairemo KJ, et al. Endoglin is a suitable target for efficient imaging of solid tumors: in vivo evidence in a canine mammary carcinoma model. Clin Cancer Res 2000;6:2037–43.

    CAS  PubMed  Google Scholar 

  116. Brekken RA, Huang X, King SW, Thorpe PE. Vascular endothelial growth factor as a marker of tumor endothelium. Cancer Res 1998;58:1952–59.

    CAS  PubMed  Google Scholar 

  117. Oh P, Li Y, Yu J, et al. Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature 2004;429:629–35.

    Article  CAS  PubMed  Google Scholar 

  118. Cooke SP, Boxer GM, Lawrence L, et al. A strategy for antitumor vascular therapy by targeting the vascular endothelial growth factor: receptor complex. Cancer Res 2001;61:3653–9.

    CAS  PubMed  Google Scholar 

  119. Ke L, Qu H, Nagy JA, et al. Vascular targeting of solid and ascites tumours with antibodies to vascular endothelial growth factor. Eur J Cancer 1996;32A:2467–73.

    PubMed  Google Scholar 

  120. Prewett M, Huber J, Li Y, et al. Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res 1999;59:5209–18.

    CAS  PubMed  Google Scholar 

  121. Zhu Z, Witte L. Inhibition of tumor growth and metastasis by targeting tumor-associated angiogenesis with antagonists to the receptors of vascular endothelial growth factor. Invest New Drugs 1999;17:195–212.

    Article  CAS  PubMed  Google Scholar 

  122. Brekken RA, Overholser JP, Stastny VA, et al. Selective inhibition of vascular endothelial growth factor (VEGF) receptor 2 (KDR/Flk-1) activity by a monoclonal anti-VEGF antibody blocks tumor growth in mice. Cancer Res 2000;60:5117–24.

    CAS  PubMed  Google Scholar 

  123. Wakai Y, Matsui J, Koizumi K, et al. Effective cancer targeting using an anti-tumor tissue vascular endothelium-specific monoclonal antibody (TES-23). Jpn J Cancer Res 2000;91:1319–25.

    CAS  PubMed  Google Scholar 

  124. Taniguchi K, Harada N, Ohizumi I, et al. Recognition of human activated CD44 by tumor vasculature-targeted antibody. Biochem Biophys Res Commun 2000;269:671–5.

    Article  CAS  PubMed  Google Scholar 

  125. Wielenga VJ, Heider KH, Offerhaus GJ, et al. Expression of CD44 variant proteins in human colorectal cancer is related to tumor progression. Cancer Res 1993;53:4754–6.

    CAS  PubMed  Google Scholar 

  126. Heider KH, Kuthan H, Stehle G, Munzert G. CD44v6: a target for antibody-based cancer therapy. Cancer Immunol Immunother 2004;53:567–79.

    Article  CAS  PubMed  Google Scholar 

  127. Borjesson PK, Postema EJ, Roos JC, et al. Phase I therapy study with 186Re-labeled humanized monoclonal antibody BIWA 4 (bivatuzumab) in patients with head and neck squamous cell carcinoma. Clin Cancer Res 2003;9:3961S–72S.

    PubMed  Google Scholar 

  128. Ran S, Downes A, Thorpe PE. Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res 2002;62:6132–40.

    CAS  PubMed  Google Scholar 

  129. Bucki R, Janmey PA, Vegners R, Giraud F, Sulpice JC. Involvement of phosphatidylinositol 4,5-bisphosphate in phosphatidylserine exposure in platelets: use of a permeant phosphoinositide-binding peptide. Biochemistry 2001;40:15752–61.

    Article  CAS  PubMed  Google Scholar 

  130. Monroe DM, Hoffman M, Roberts HR. Platelets and thrombin generation. Arterioscler Thromb Vasc Biol 2002;22:1381–9.

    Article  CAS  PubMed  Google Scholar 

  131. Huminiecki L, Gorn M, Suchting S, Poulsom R, Bicknell R. Magic roundabout is a new member of the roundabout receptor family that is endothelial specific and expressed at sites of active angiogenesis. Genomics 2002;79:547–52.

    Article  CAS  PubMed  Google Scholar 

  132. Pasqualini R, Koivunen E, Kain R, et al. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 2000;60:722–7.

    CAS  PubMed  Google Scholar 

  133. Curnis F, Sacchi A, Borgna L, et al. Enhancement of tumor necrosis factor alpha antitumor immunotherapeutic properties by targeted delivery to aminopeptidase N (CD13). Nat Biotechnol 2000;18:1185–90.

    Article  CAS  PubMed  Google Scholar 

  134. Wyder L, Vitaliti A, Schneider H, et al. Increased expression of H/T-cadherin in tumor-penetrating blood vessels. Cancer Res 2000;60:4682–8.

    CAS  PubMed  Google Scholar 

  135. St Croix B, Rago C, Velculescu V, et al. Genes expressed in human tumor endothelium. Science 2000;289:1197–202.

    Article  CAS  PubMed  Google Scholar 

  136. Gerritsen ME, Soriano R, Yang S, et al. In silico data filtering to identify new angiogenesis targets from a large in vitro gene profiling data set. Physiol Genomics 2002;10:13–20.

    CAS  PubMed  Google Scholar 

  137. Chang AC, Jellinek DA, Reddel RR. Mammalian stanniocalcins and cancer. Endocr Relat Cancer 2003;10:359–73.

    CAS  PubMed  Google Scholar 

  138. Ishibashi K, Imai M. Prospect of a stanniocalcin endocrine/paracrine system in mammals. Am J Physiol Renal Physiol 2002;282:F367–75.

    CAS  PubMed  Google Scholar 

  139. Jacobson BS, Schnitzer JE, McCaffery M, Palade GE. Isolation and partial characterization of the luminal plasmalemma of microvascular endothelium from rat lungs. Eur J Cell Biol 1992;58:296–306.

    CAS  PubMed  Google Scholar 

  140. Czarny M, Liu J, Oh P, Schnitzer JE. Transient mechanoactivation of neutral sphingomyelinase in caveolae to generate ceramide. J Biol Chem 2003;278:4424–30.

    Article  CAS  PubMed  Google Scholar 

  141. De La Fuente EK, Dawson CA, Nelin LD, et al. Biotinylation of membrane proteins accessible via the pulmonary circulation in normal and hyperoxic rats. Am J Physiol 1997;272:L461–70.

    PubMed  Google Scholar 

  142. Pasqualini R, Ruoslahti E. Organ targeting in vivo using phage display peptide libraries. Nature 1996;380:364–6.

    Article  CAS  PubMed  Google Scholar 

  143. Rajotte D, Arap W, Hagedorn M, et al. Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. J Clin Invest 1998;102:430–7.

    CAS  PubMed  Google Scholar 

  144. Pasqualini R, Koivunen E, Ruoslahti E. Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol 1997;15:542–6.

    CAS  PubMed  Google Scholar 

  145. Jones PT, Dear PH, Foote J, Neuberger MS, Winter G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 1986;321:522–5.

    CAS  PubMed  Google Scholar 

  146. Lonberg N, Taylor LD, Harding FA, et al. Antigen-specific human antibodies from mice comprising four distinct genetic modifications. Nature 1994;368:856–9.

    Article  CAS  PubMed  Google Scholar 

  147. Kellermann SA, Green LL. Antibody discovery: the use of transgenic mice to generate human monoclonal antibodies for therapeutics. Curr Opin Biotechnol 2002;13:593–7.

    Article  CAS  PubMed  Google Scholar 

  148. Yang WP, Green K, Pinz-Sweeney S, et al. CDR walking mutagenesis for the affinity maturation of a potent human anti-HIV-1 antibody into the picomolar range. J Mol Biol 1995;254:392–403.

    Article  CAS  PubMed  Google Scholar 

  149. Low NM, Holliger PH, Winter G. Mimicking somatic hypermutation: affinity maturation of antibodies displayed on bacteriophage using a bacterial mutator strain. J Mol Biol 1996;260:359–68.

    Article  CAS  PubMed  Google Scholar 

  150. Schier R, Bye J, Apell G, et al. Isolation of high-affinity monomeric human anti-c-erbB-2 single chain Fv using affinity-driven selection. J Mol Biol 1996;255:28–43.

    Article  CAS  PubMed  Google Scholar 

  151. Graff CP, Chester K, Begent R, Wittrup KD. Directed evolution of an anti-carcinoembryonic antigen scFv with a four-day monovalent dissociation half-time at 37°C. Protein Eng Des Sel 2004, Apr 28 [Epub ahead of print].

  152. Hanes J, Pluckthun A. In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci U S A 1997;94:4937–42.

    Article  CAS  PubMed  Google Scholar 

  153. Hanes J, Schaffitzel C, Knappik A, Pluckthun A. Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat Biotechnol 2000;18:1287–92.

    Article  CAS  PubMed  Google Scholar 

  154. Lowe D, Jermutus L. Combinatorial protein biochemistry for therapeutics and proteomics. Curr Pharm Biotechnol 2004;5:17–27.

    CAS  PubMed  Google Scholar 

  155. Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 1998;279:377–80.

    Article  CAS  PubMed  Google Scholar 

  156. Maeshima Y, Sudhakar A, Lively JC, et al. Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science 2002;295:140–3.

    Article  CAS  PubMed  Google Scholar 

  157. Hamano Y, Zeisberg M, Sugimoto H, et al. Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaV beta3 integrin. Cancer Cell 2003;3:589–601.

    Article  CAS  PubMed  Google Scholar 

  158. Collins J, Horn N, Wadenback J, Szardenings M. Cosmix-plexing: a novel recombinatorial approach for evolutionary selection from combinatorial libraries. J Biotechnol 2001;74:317–38.

    Article  CAS  PubMed  Google Scholar 

  159. Brody EN, Gold L. Aptamers as therapeutic and diagnostic agents. J Biotechnol 2000;74:5–13.

    Article  CAS  PubMed  Google Scholar 

  160. Vater A, Klussmann S. Toward third-generation aptamers: spiegelmers and their therapeutic prospects. Curr Opin Drug Discov Devel 2003;6:253–61.

    CAS  PubMed  Google Scholar 

  161. Hauff P, Stephens A, Braeutigam M. New imaging probes. In: Debatin JF, Hricak H, Niendorf HP, Esser M, editors. MRI: from current knowledge to new horizons. The Netherlands: Excerpta Medica Medical Communications BV; 2003.

    Google Scholar 

  162. Arkin MR, Wells JA. Small-molecule inhibitors of protein–protein interactions: progressing towards the dream. Nat Rev Drug Discov 2004;3:301–17.

    Article  CAS  PubMed  Google Scholar 

  163. Mammen M, Choi S-K, Whitesides GM. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed 1998;37:2754–94.

    Article  Google Scholar 

  164. Shuker SB, Hajduk PJ, Meadows RP, Fesik SW. Discovering high-affinity ligands for proteins: SAR by NMR. Science 1996;274:1531–4.

    Article  CAS  PubMed  Google Scholar 

  165. Ramstrom O, Lehn JM. Drug discovery by dynamic combinatorial libraries. Nat Rev Drug Discov 2002;1:26–36.

    Article  CAS  PubMed  Google Scholar 

  166. Erlanson DA, Lam JW, Wiesmann C, et al. In situ assembly of enzyme inhibitors using extended tethering. Nat Biotechnol 2003;21:308–14.

    Article  CAS  PubMed  Google Scholar 

  167. Melkko S, Scheuermann J, Dumelin CE, Neri D. Encoded self-assembling chemical libraries. Nat Biotechnol 2004;22:568–74.

    Article  CAS  PubMed  Google Scholar 

  168. Supuran CT, Scozzafava A, Casini A. Carbonic anhydrase inhibitors. Med Res Rev 2003;23:146–89.

    Article  CAS  PubMed  Google Scholar 

  169. Chrastina A, Pastorekova S, Pastorek J. Immunotargeting of human cervical carcinoma xenograft expressing CA IX tumor-associated antigen by 125I-labeled M75 monoclonal antibody. Neoplasma 2003;50:13–21.

    CAS  PubMed  Google Scholar 

  170. Chrastina A, Zavada J, Parkkila S, et al. Biodistribution and pharmacokinetics of 125I-labeled monoclonal antibody M75 specific for carbonic anhydrase IX, an intrinsic marker of hypoxia, in nude mice xenografted with human colorectal carcinoma. Int J Cancer 2003;105:873–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Neri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brack, S.S., Dinkelborg, L.M. & Neri, D. Molecular targeting of angiogenesis for imaging and therapy. Eur J Nucl Med Mol Imaging 31, 1327–1341 (2004). https://doi.org/10.1007/s00259-004-1648-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-004-1648-0

Keywords

Navigation