Skip to main content

Advertisement

Log in

CT fluoroscopy-guided vertebral augmentation with a radiofrequency-induced, high-viscosity bone cement (StabiliT®): technical results and polymethylmethacrylate leakages in 25 patients

  • Technical Report
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To assess the technical results of CT fluoroscopy-guided, radiofrequency-induced vertebral augmentation (StabiliT®) in terms of vertebral height restoration and polymethylmethacrylate (PMMA) leakages, occurring in 25 individual patients with vertebral compression fractures and osteolysis.

Materials and methods

From 07/2010 to 08/2011, 25 patients (16 women, nine men; age 71 ± 14; range 41–89) with painful vertebral compression fractures due to osteoporosis (n = 19), metastases (n = 2) or multiple myeloma (n = 4) underwent vertebral augmentation with a radiofrequency-activated, high-viscosity polymethylmethacrylate (PMMA) bone cement (StabiliT® Vertebral Augmentation system; DFINE Europe GmbH, Mannheim) under local anesthesia. Thirty-four vertebrae (Th5–L5) were treated in 27 sessions under CT fluoroscopy guidance (128-row CT, Somatom Definition AS, Siemens, Erlangen) using a unilateral access and a cavity-creating osteotome prior to remote-controlled, hydraulically driven cement injection. 1/2/3 levels were treated in 21/5/1 session(s). Vertebral height change in the midsagittal plane (anterior, midvertebral, posterior endplate distance) and PMMA leaks were retrospectively evaluated using the postinterventional CT.

Results

All patients were successfully treated in the first session. Mean (MV ± SD) procedure time and amount of injected PMMA were 56 ± 14 min and 4.5 ± 1.4 ml, respectively. Mean anterior/midvertebral/posterior height gain was +7.1/+9.7/+0.4 %. Small local vertebral leaks were observed in 18/34 vertebrae (53 %) without any clinical sequelae. No major complications occurred.

Conclusions

CT fluoroscopy-guided, RF-induced vertebral augmentation with a high-viscosity bone cement (StabiliT®) was safe and technically successful in all patients. Using a hydraulic cement injection technique, a moderate restoration of anterior and midvertebral height was seen while the system was not markedly superior to standard vertebroplasty regarding the frequency of minor asymptomatic PMMA leaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17(12):1726–33.

    Article  PubMed  CAS  Google Scholar 

  2. Lindsay R, Silverman SL, Cooper C, Hanley DA, Barton I, Broy SB, et al. Risk of new vertebral fracture in the year following a fracture. JAMA. 2001;285(3):320–3.

    Article  PubMed  CAS  Google Scholar 

  3. Galibert P, Deramond H, Rosat P, Le Gars D. Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty. Neurochirurgie. 1987;33(2):166–8.

    PubMed  CAS  Google Scholar 

  4. Lieberman IH, Dudeney S, Reinhardt MK, Bell G. Initial outcome and efficacy of "kyphoplasty" in the treatment of painful osteoporotic vertebral compression fractures. Spine. 2001;26(14):1631–8.

    Article  PubMed  CAS  Google Scholar 

  5. Kayanja MM, Togawa D, Lieberman IH. Biomechanical changes after the augmentation of experimental osteoporotic vertebral compression fractures in the cadaveric thoracic spine. Spine J. 2005;5(1):55–63.

    Article  PubMed  Google Scholar 

  6. Hadjipavlou AG, Tzermiadianos MN, Katonis PG, Szpalski M. Percutaneous vertebroplasty and balloon kyphoplasty for the treatment of osteoporotic vertebral compression fractures and osteolytic tumours. J Bone Joint Surg. 2005;87(12):1595–604.

    Article  CAS  Google Scholar 

  7. Gangi A, Sabharwal T, Irani FG, Buy X, Morales JP, Adam A. Quality assurance guidelines for percutaneous vertebroplasty. Cardiovasc Intervent Radiol. 2006;29(2):173–8.

    Article  PubMed  Google Scholar 

  8. Hohl C, Suess C, Wildberger JE, Honnef D, Das M, Muhlenbruch G, et al. Dose reduction during CT fluoroscopy: phantom study of angular beam modulation. Radiology. 2008;246(2):519–25.

    Article  PubMed  Google Scholar 

  9. Elgeti FA, Marnitz T, Kroncke TJ, Gebauer B. DFine radiofrequency kyphoplasty (RFK)–kyphoplasty with ultrahigh viscosity cement. Rofo. 2010;182(9):803–5.

    Article  PubMed  CAS  Google Scholar 

  10. Upasani VV, Robertson C, Lee D, Tomlinson T, Mahar AT. Biomechanical comparison of kyphoplasty versus a titanium mesh implant with cement for stabilization of vertebral compression fractures. Spine (Phila Pa 1976). 2010; 35(19):1783–1788.

  11. Ghofrani H, Nunn T, Robertson C, Mahar A, Lee Y, Garfin S. An evaluation of fracture stabilization comparing kyphoplasty and titanium mesh repair techniques for vertebral compression fractures: is bone cement necessary? Spine (Phila Pa 1976). 2010;35(16):E768-773.

  12. Rotter R, Martin H, Fuerderer S, Gabl M, Roeder C, Heini P, et al. Vertebral body stenting: a new method for vertebral augmentation versus kyphoplasty. Eur Spine J. 2010;19(6):916–923.

    Google Scholar 

  13. Shen GW, Wu NQ, Zhang N, Jin ZS, Xu J, Yin GY. A prospective comparative study of kyphoplasty using the Jack vertebral dilator and balloon kyphoplasty for the treatment of osteoporotic vertebral compression fractures. J Bone Joint Surg. 2010;92(9):1282–8.

    Article  CAS  Google Scholar 

  14. Chen C, Chen L, Gu Y, Xu Y, Liu Y, Bai X, et al. Kyphoplasty for chronic painful osteoporotic vertebral compression fractures via unipedicular versus bipedicular approachment: a comparative study in early stage. Injury. 2010;41(4):356–359.

    Google Scholar 

  15. Grohs JG, Matzner M, Trieb K, Krepler P. Minimal invasive stabilization of osteoporotic vertebral fractures: a prospective nonrandomized comparison of vertebroplasty and balloon kyphoplasty. J Spinal Disord Tech. 2005;18(3):238–42.

    PubMed  Google Scholar 

  16. Hulme PA, Krebs J, Ferguson SJ, Berlemann U. Vertebroplasty and kyphoplasty: a systematic review of 69 clinical studies. Spine. 2006;31(17):1983–2001.

    Article  PubMed  Google Scholar 

  17. Phillips FM, ToddWetzel F, Lieberman I, Campbell-Hupp M. An in vivo comparison of the potential for extravertebral cement leak after vertebroplasty and kyphoplasty. Spine. 2002;27(19):2173–8. discussion 2178–2179.

    Article  PubMed  Google Scholar 

  18. Vasconcelos C, Gailloud P, Martin JB, Murphy KJ. Transient arterial hypotension induced by polymethylmethacrylate injection during percutaneous vertebroplasty. J Vasc Interv Radiol. 2001;12(8):1001–2.

    Article  PubMed  CAS  Google Scholar 

  19. Harrington KD. Major neurological complications following percutaneous vertebroplasty with polymethylmethacrylate: a case report. The Journal of Bone and joint surgery. 2001; 83-A(7):1070–1073.

    Google Scholar 

  20. Mizrahi B, Shavit R, Domb A. Synthesis and characterization of polymeric implant for kyphoplasty. J Biomed Mater Res. 2008;86B(2):466–73.

    Article  CAS  Google Scholar 

  21. Anselmetti GC, Zoarski G, Manca A, Masala S, Eminefendic H, Russo F, et al. Percutaneous vertebroplasty and bone cement leakage: clinical experience with a new high-viscosity bone cement and delivery system for vertebral augmentation in benign and malignant compression fractures. Cardiovasc Intervent Radiol. 2008;31(5):937–47.

    Article  PubMed  Google Scholar 

  22. Polikeit A, Nolte LP, Ferguson SJ. The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: finite-element analysis. Spine (Phila Pa 1976). 2003; 28(10):991–996.

  23. Campbell PG, Harrop JS. Incidence of fracture in adjacent levels in patients treated with balloon kyphoplasty: a review of the literature. Cur Rev Musculoskel Med. 2008;1(1):61–4.

    Article  Google Scholar 

Download references

Conflict of interest disclosure

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Gregor Trumm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trumm, C.G., Jakobs, T.F., Stahl, R. et al. CT fluoroscopy-guided vertebral augmentation with a radiofrequency-induced, high-viscosity bone cement (StabiliT®): technical results and polymethylmethacrylate leakages in 25 patients. Skeletal Radiol 42, 113–120 (2013). https://doi.org/10.1007/s00256-012-1386-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-012-1386-5

Keywords

Navigation