Skip to main content
Log in

Diffusion-weighted imaging (DWI) in musculoskeletal MRI: a critical review

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging (MRI) is the mainstay of diagnosis, staging and follow-up of much musculoskeletal pathology. Diffusion-weighted magnetic resonance imaging (DWI) is a recent addition to the MR sequences conventionally employed. DWI provides qualitative and quantitative functional information concerning the microscopic movements of water at the cellular level. A number of musculoskeletal disorders have been evaluated by DWI, including vertebral fractures, bone marrow infection, bone marrow malignancy, primary bone and soft tissue tumours; post-treatment follow-up has also been assessed. Differentiation between benign and malignant vertebral fractures by DWI and monitoring of therapy response have shown excellent results. However, in other pathologies, such as primary soft tissue tumours, DWI data have been inconclusive in some cases, contributing little additional information beyond that gained from conventional MR sequences. The aim of this article is to critically review the current literature on the contribution of DWI to musculoskeletal MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6a, b
Fig. 7a, b

Similar content being viewed by others

References

  1. Schaefer PW, Copen WA, Lev MH, Gonzalez RG. Diffusion-weighted imaging in acute stroke. Magn Reson Imaging Clin N Am. 2006;14(2):141–68.

    Article  PubMed  Google Scholar 

  2. Karaarslan E, Arslan A. Diffusion weighted MR imaging in non-infarct lesions of the brain. Eur J Radiol. 2008;65(3):402–16.

    Article  PubMed  CAS  Google Scholar 

  3. Baur A, Stäbler A, Brüning R, Bartl R, Krödel A, Reiser M, et al. Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology. 1998;207(2):349–56.

    PubMed  CAS  Google Scholar 

  4. Byun WM, Shin SO, Chang Y, Lee SJ, Finsterbusch J, Frahm J. Diffusion-weighted MR imaging of metastatic disease of the spine: assessment of response to therapy. AJNR Am J Neuroradiol. 2002;23(6):906–12.

    PubMed  Google Scholar 

  5. Bley TA, Wieben O, Uhl M. Diffusion-weighted MR imaging in musculoskeletal radiology: applications in trauma, tumors, and inflammation. Magn Reson Imaging Clin N Am. 2009;17(2):263–75.

    Article  PubMed  Google Scholar 

  6. Turner R, Le Bihan D, Maier J, Vavrek R, Hedges LK, Pekar J. Echo-planar imaging of intravoxel incoherent motion. Radiology. 1990;177(2):407–14.

    PubMed  CAS  Google Scholar 

  7. Le Bihan D, Turner R, Douek P, Patronas N. Diffusion MR imaging: clinical applications. AJR Am J Roentgenol. 1992;159(3):591–9.

    PubMed  Google Scholar 

  8. Raya JG, Dietrich O, Reiser MF, Baur-Melnyk A. Methods and applications of diffusion imaging of vertebral bone marrow. J Magn Reson Imaging. 2006;24(6):1207–20.

    Article  PubMed  Google Scholar 

  9. Karchevsky M, Babb JS, Schweitzer ME. Can diffusion-weighted imaging be used to differentiate benign from pathologic fractures? A meta-analysis. Skeletal Radiol. 2008;37(9):791–5.

    Article  PubMed  Google Scholar 

  10. Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny HC, Takahara T, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 2009;11(2):102–25.

    PubMed  CAS  Google Scholar 

  11. Nonomura Y, Yasumoto M, Yoshimura R, Haraguchi K, Ito S, Akashi T, et al. Relationship between bone marrow cellularity and apparent diffusion coefficient. J Magn Reson Imaging. 2001;13(5):757–60.

    Article  PubMed  CAS  Google Scholar 

  12. Tang GY, Lv ZW, Tang RB, Liu Y, Peng YF, Li W, et al. Evaluation of MR spectroscopy and diffusion-weighted MRI in detecting bone marrow changes in postmenopausal women with osteoporosis. Clin Radiol. 2010;65(5):377–81.

    Article  PubMed  CAS  Google Scholar 

  13. Galbán CJ, Chenevert TL, Meyer CR, Tsien C, Lawrence TS, Hamstra DA, et al. The parametric response map is an imaging biomarker for early cancer treatment outcome. Nat Med. 2009;15(5):572–6.

    Article  PubMed  Google Scholar 

  14. Reischauer C, Froehlich JM, Koh D, Graf N, Padevit C, John H, et al. Bone metastases from prostate cancer: assessing treatment response by using diffusion-weighted imaging and functional diffusion maps–initial observations. Radiology. 2010;257(2):523–31.

    Article  PubMed  Google Scholar 

  15. Fischer MA, Nanz D, Hany T, Reiner CS, Stolzmann P, Donati OF, et al. Diagnostic accuracy of whole-body MRI/DWI image fusion for detection of malignant tumours: a comparison with PET/CT. Eur Radiol [Epub ahead of print]. doi:10.1007/s00330-010-1929-x

  16. Takahara T, Imai Y, Yamashita T, Yasuda S, Nasu S, Van Cauteren M. Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med. 2004;22(4):275–82.

    PubMed  Google Scholar 

  17. Kwee TC, Takahara T, Ochiai R, Katahira K, Van Cauteren M, Imai Y, et al. Whole-body diffusion-weighted magnetic resonance imaging. Eur J Radiol. 2009;70(3):409–17.

    Article  PubMed  Google Scholar 

  18. Gutzeit A, Doert A, Froehlich JM, Eckhardt BP, Meili A, Scherr P, et al. Comparison of diffusion-weighted whole body MRI and skeletal scintigraphy for the detection of bone metastases in patients with prostate or breast carcinoma. Skeletal Radiol. 2010;39(4):333–43.

    Article  PubMed  Google Scholar 

  19. Baur A, Huber A, Ertl-Wagner B, Dürr R, Zysk S, Arbogast S, et al. Diagnostic value of increased diffusion weighting of a steady-state free precession sequence for differentiating acute benign osteoporotic fractures from pathologic vertebral compression fractures. AJNR Am J Neuroradiol. 2001;22(2):366–72.

    PubMed  CAS  Google Scholar 

  20. Spuentrup E, Buecker A, Adam G, van Vaals JJ, Guenther RW. Diffusion-weighted MR imaging for differentiation of benign fracture edema and tumor infiltration of the vertebral body. Am J Roentgenol. 2001;176(2):351–8.

    CAS  Google Scholar 

  21. Byun WM, Jang HW, Kim SW, Jang SH, Ahn SH, Ahn MW. Diffusion-weighted magnetic resonance imaging of sacral insufficiency fractures: comparison with metastases of the sacrum. Spine. 2007;32(26):E820–824.

    Article  PubMed  Google Scholar 

  22. Castillo M, Arbelaez A, Smith JK, Fisher LL. Diffusion-weighted MR imaging offers no advantage over routine noncontrast MR imaging in the detection of vertebral metastases. AJNR Am J Neuroradiol. 2000;21(5):948–53.

    PubMed  CAS  Google Scholar 

  23. Baur A, Dietrich O, Reiser M. Diffusion-weighted imaging of the spinal column. Neuroimaging Clin N Am. 2002;12(1):147–60.

    Article  PubMed  Google Scholar 

  24. Baur A, Dietrich O, Reiser M. Diffusion-weighted imaging of bone marrow: current status. Eur Radiol. 2003;13(7):1699–708.

    Article  PubMed  Google Scholar 

  25. Chan JHM, Peh WCG, Tsui EYK, Chau LF, Cheung KK, Chan KB, et al. Acute vertebral body compression fractures: discrimination between benign and malignant causes using apparent diffusion coefficients. Br J Radiol. 2002;75(891):207–14.

    PubMed  CAS  Google Scholar 

  26. Pui MH, Mitha A, Rae WID, Corr P. Diffusion-weighted magnetic resonance imaging of spinal infection and malignancy. J Neuroimaging. 2005;15(2):164–70.

    PubMed  Google Scholar 

  27. Baur A, Huber A, Dürr HR, Nikolaou K, Stäbler A, Deimling M, et al. Differentiation of benign osteoporotic and neoplastic vertebral compression fractures with a diffusion-weighted, steady-state free precession sequence. Rofo. 2002;174(1):70–5.

    PubMed  CAS  Google Scholar 

  28. Bhugaloo A, Abdullah B, Siow Y, Kh N. Diffusion weighted MR imaging in acute vertebral compression fractures: differentiation between malignant and benign causes. Biomed Imaging Interv J. 2006;2(2):e12.

    Google Scholar 

  29. Park S, Lee J, Ehara S, Park Y, Sung SO, Choi J, et al. Single shot fast spin echo diffusion-weighted MR imaging of the spine: is it useful in differentiating malignant metastatic tumor infiltration from benign fracture edema? Clin Imaging. 2004;28(2):102–8.

    Article  PubMed  Google Scholar 

  30. Jung H, Jee W, McCauley TR, Ha K, Choi K. Discrimination of metastatic from acute osteoporotic compression spinal fractures with MR imaging. Radiographics. 2003;23(1):179–87.

    Article  PubMed  Google Scholar 

  31. An HS, Andreshak TG, Nguyen C, Williams A, Daniels D. Can we distinguish between benign versus malignant compression fractures of the spine by magnetic resonance imaging? Spine. 1995;20(16):1776–82.

    Article  PubMed  CAS  Google Scholar 

  32. Shih TT, Huang KM, Li YW. Solitary vertebral collapse: distinction between benign and malignant causes using MR patterns. J Magn Reson Imaging. 1999;9(5):635–42.

    Article  PubMed  CAS  Google Scholar 

  33. Frager D, Elkin C, Swerdlow M, Bloch S. Subacute osteoporotic compression fracture: misleading magnetic resonance appearance. Skeletal Radiol. 1988;17(2):123–6.

    Article  PubMed  CAS  Google Scholar 

  34. Cuénod CA, Laredo JD, Chevret S, Hamze B, Naouri JF, Chapaux X, et al. Acute vertebral collapse due to osteoporosis or malignancy: appearance on unenhanced and gadolinium-enhanced MR images. Radiology. 1996;199(2):541–9.

    PubMed  Google Scholar 

  35. Herneth AM, Friedrich K, Weidekamm C, Schibany N, Krestan C, Czerny C, et al. Diffusion weighted imaging of bone marrow pathologies. Eur J Radiol. 2005;55(1):74–83.

    Article  PubMed  Google Scholar 

  36. Stäbler A, Baur A, Krüger A, Weiss M, Helmberger T, Reiser M. Differential diagnosis of erosive osteochondrosis and bacterial spondylitis: magnetic resonance tomography (MRT). Rofo. 1998;168(5):421–8.

    PubMed  Google Scholar 

  37. Yasumoto M, Nonomura Y, Yoshimura R, Haraguchi K, Ito S, Ohashi I, et al. MR detection of iliac bone marrow involvement by malignant lymphoma with various MR sequences including diffusion-weighted echo-planar imaging. Skeletal Radiol. 2002;31(5):263–9.

    Article  PubMed  CAS  Google Scholar 

  38. Lin C, Itti E, Luciani A, Haioun C, Meignan M, Rahmouni A. Whole-body diffusion-weighted imaging in lymphoma. Cancer Imaging. 2010;10:S172–178.

    Article  PubMed  Google Scholar 

  39. Ballon D, Dyke J, Schwartz LH, Lis E, Schneider E, Lauto A, et al. Bone marrow segmentation in leukemia using diffusion and T (2) weighted echo planar magnetic resonance imaging. NMR Biomed. 2000;13(6):321–8.

    Article  PubMed  CAS  Google Scholar 

  40. van Rijswijk CSP, Kunz P, Hogendoorn PCW, Taminiau AHM, Doornbos J, Bloem JL. Diffusion-weighted MRI in the characterization of soft-tissue tumors. J Magn Reson Imaging. 2002;15(3):302–7.

    Article  PubMed  Google Scholar 

  41. Einarsdóttir H, Karlsson M, Wejde J, Bauer H. Diffusion-weighted MRI of soft tissue tumours. Eur Radiol. 2004;14(6):959–63.

    Article  PubMed  Google Scholar 

  42. Nagata S, Nishimura H, Uchida M, Sakoda J, Tonan T, Hiraoka K, et al. Diffusion-weighted imaging of soft tissue tumors: usefulness of the apparent diffusion coefficient for differential diagnosis. Radiat Med. 2008;26(5):287–95.

    Article  PubMed  Google Scholar 

  43. Maeda M, Matsumine A, Kato H, Kusuzaki K, Maier SE, Uchida A, et al. Soft-tissue tumors evaluated by line-scan diffusion-weighted imaging: influence of myxoid matrix on the apparent diffusion coefficient. J Magn Reson Imaging. 2007;25(6):1199–204.

    Article  PubMed  Google Scholar 

  44. Oka K, Yakushiji T, Sato H, Yorimitsu S, Hayashida Y, Yamashita Y, et al. Ability of diffusion-weighted imaging for the differential diagnosis between chronic expanding hematomas and malignant soft tissue tumors. J Magn Reson Imaging. 2008;28(5):1195–200.

    Article  PubMed  Google Scholar 

  45. Dudeck O, Zeile M, Pink D, Pech M, Tunn P, Reichardt P, et al. Diffusion-weighted magnetic resonance imaging allows monitoring of anticancer treatment effects in patients with soft-tissue sarcomas. J Magn Reson Imaging. 2008;27(5):1109–13.

    Article  PubMed  Google Scholar 

  46. Baur A, Huber A, Arbogast S, Dürr HR, Zysk S, Wendtner C, et al. Diffusion-weighted imaging of tumor recurrencies and posttherapeutical soft-tissue changes in humans. Eur Radiol. 2001;11(5):828–33.

    Article  PubMed  CAS  Google Scholar 

  47. Murphey MD, Flemming DJ, Boyea SR, Bojescul JA, Sweet DE, Temple HT. Enchondroma versus chondrosarcoma in the appendicular skeleton: differentiating features. Radiographics. 1998;18(5):1213–37.

    PubMed  CAS  Google Scholar 

  48. Hayashida Y, Hirai T, Yakushiji T, Katahira K, Shimomura O, Imuta M, et al. Evaluation of diffusion-weighted imaging for the differential diagnosis of poorly contrast-enhanced and T2-prolonged bone masses: initial experience. J Magn Reson Imaging. 2006;23(3):377–82.

    Article  PubMed  Google Scholar 

  49. Franzius C, Sciuk J, Daldrup-Link HE, Jürgens H, Schober O. FDG-PET for detection of osseous metastases from malignant primary bone tumours: comparison with bone scintigraphy. Eur J Nucl Med. 2000;27(9):1305–11.

    Article  PubMed  CAS  Google Scholar 

  50. Daldrup-Link HE, Franzius C, Link TM, Laukamp D, Sciuk J, Jürgens H, et al. Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR Am J Roentgenol. 2001;177(1):229–36.

    PubMed  CAS  Google Scholar 

  51. Picci P, Bacci G, Campanacci M, Gasparini M, Pilotti S, Cerasoli S, et al. Histologic evaluation of necrosis in osteosarcoma induced by chemotherapy. Regional mapping of viable and nonviable tumor. Cancer. 1985;56(7):1515–21.

    Article  PubMed  CAS  Google Scholar 

  52. Uhl M, Saueressig U, Koehler G, Kontny U, Niemeyer C, Reichardt W, et al. Evaluation of tumour necrosis during chemotherapy with diffusion-weighted MR imaging: preliminary results in osteosarcomas. Pediatr Radiol. 2006;36(12):1306–11.

    Article  PubMed  Google Scholar 

  53. Uhl M, Saueressig U, van Buiren M, Kontny U, Niemeyer C, Köhler G, et al. Osteosarcoma: preliminary results of in vivo assessment of tumor necrosis after chemotherapy with diffusion- and perfusion-weighted magnetic resonance imaging. Invest Radiol. 2006;41(8):618–23.

    Article  PubMed  CAS  Google Scholar 

  54. Hayashida Y, Yakushiji T, Awai K, Katahira K, Nakayama Y, Shimomura O, et al. Monitoring therapeutic responses of primary bone tumors by diffusion-weighted image: initial results. Eur Radiol. 2006;16(12):2637–43.

    Article  PubMed  Google Scholar 

  55. Oka K, Yakushiji T, Sato H, Hirai T, Yamashita Y, Mizuta H. The value of diffusion-weighted imaging for monitoring the chemotherapeutic response of osteosarcoma: a comparison between average apparent diffusion coefficient and minimum apparent diffusion coefficient. Skeletal Radiol. 2010;39(2):141–6.

    Article  PubMed  Google Scholar 

  56. Fletcher BD, Wall JE, Hanna SL. Effect of hematopoietic growth factors on MR images of bone marrow in children undergoing chemotherapy. Radiology. 1993;189(3):745–51.

    PubMed  CAS  Google Scholar 

  57. Ballon D, Watts R, Dyke JP, Lis E, Morris MJ, Scher HI, et al. Imaging therapeutic response in human bone marrow using rapid whole-body MRI. Magn Reson Med. 2004;52(6):1234–8.

    Article  PubMed  Google Scholar 

  58. Oner AY, Tali T, Celikyay F, Celik A, Le Roux P. Diffusion-weighted imaging of the spine with a non-carr-purcell-meiboom-gill single-shot fast spin-echo sequence: initial experience. AJNR Am J Neuroradiol. 2007;28(3):575–80.

    PubMed  CAS  Google Scholar 

  59. Tang G, Liu Y, Li W, Yao J, Li B, Li P. Optimization of b value in diffusion-weighted MRI for the differential diagnosis of benign and malignant vertebral fractures. Skeletal Radiol. 2007;36(11):1035–41.

    Article  PubMed  Google Scholar 

  60. Zhou XJ, Leeds NE, McKinnon GC, Kumar AJ. Characterization of benign and metastatic vertebral compression fractures with quantitative diffusion MR imaging. AJNR Am J Neuroradiol. 2002;23(1):165–70.

    PubMed  Google Scholar 

  61. Raya JG, Dietrich O, Birkenmaier C, Sommer J, Reiser MF, Baur-Melnyk A. Feasibility of a RARE-based sequence for quantitative diffusion-weighted MRI of the spine. Eur Radiol. 2007;17(11):2872–9.

    Article  PubMed  CAS  Google Scholar 

  62. Herneth AM, Naude J, Philipp M, Beichel R, Trattnig S, Imhof H. The value of diffusion-weighted MRT in assessing the bone marrow changes in vertebral metastases. Radiologe. 2000;40(8):731–6.

    Article  PubMed  CAS  Google Scholar 

  63. Herneth AM, Philipp MO, Naude J, Funovics M, Beichel RR, Bammer R, et al. Vertebral metastases: assessment with apparent diffusion coefficient. Radiology. 2002;225(3):889–94.

    Article  PubMed  Google Scholar 

  64. Balliu E, Vilanova JC, Peláez I, Puig J, Remollo S, Barceló C, et al. Diagnostic value of apparent diffusion coefficients to differentiate benign from malignant vertebral bone marrow lesions. Eur J Radiol. 2009;69(3):560–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Financial disclosure

The authors have nothing to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael M. Y. Khoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khoo, M.M.Y., Tyler, P.A., Saifuddin, A. et al. Diffusion-weighted imaging (DWI) in musculoskeletal MRI: a critical review. Skeletal Radiol 40, 665–681 (2011). https://doi.org/10.1007/s00256-011-1106-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-011-1106-6

Keywords

Navigation