Skip to main content
Log in

Glutathione-mediated mineralization of 14C-labeled 2-amino-4,6-dinitrotoluene by manganese-dependent peroxidase H5 from the white-rot fungus Phanerochaete chrysosporium

  • ORIGINAL PAPER
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Manganese-dependent peroxidase (MnP) H5 from the white-rot fungus Phanerochaete chrysosporium, in the presence of either Mn(II) (10 mM) or GSH (10 mM), was able to mineralize 14C-U-ring-labeled 2-amino-4,6-dinitrotoluene (2-A-4,6-DNT) up to 29% in 12 days. When both Mn(II) and GSH were present, the mineralization extent reached 82%. On the other hand, no significant mineralization was observed in the absence of both Mn(II) and GSH, suggesting the requirement of a mediator [either Mn(II) or GSH] for the degradation of 2-A-4,6-DNT by MnP. Using electron spin resonance (ESR) techniques, it was found that the glutathionyl free radical (GS) was produced through the oxidation of GSH by MnP in the presence as well as in the absence of Mn(II). GS was also generated through the direct oxidation of GSH by Mn(III). Our results strongly suggest the involvement of GS in the GSH-mediated mineralization of 2-A-4,6-DNT by MnP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 18 February 2000 / Received revision: 24 May 2000 / Accepted: 26 May 2000

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Aken, B., Cameron, M., Stahl, J. et al. Glutathione-mediated mineralization of 14C-labeled 2-amino-4,6-dinitrotoluene by manganese-dependent peroxidase H5 from the white-rot fungus Phanerochaete chrysosporium . Appl Microbiol Biotechnol 54, 659–664 (2000). https://doi.org/10.1007/s002530000436

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002530000436

Keywords

Navigation