Skip to main content
Log in

Resistance response to Arenicin derivatives in Escherichia coli

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The rising prevalence of antibiotic resistance poses the greatest health threats. Antimicrobial peptides (AMPs) are regarded as the potentially effective therapy. To avoid current crisis of antibiotic resistance, a comprehensive understanding of AMP resistance is necessary before clinical application. In this study, the development of resistance to the anti-Gram-negative bacteria peptide N6NH2 (21 residues, β-sheet) was characterized in E. coli ATCC25922. Three N6NH2-resistant E. coli mutants with 32-fold increase in MIC were isolated by serially passaging bacterial lineages in progressively increasing concentrations of N6NH2 and we mainly focus on the phenotype of N6NH2-resistant bacteria different from sensitive bacteria. The results showed that the resistance mechanism was attributed to synergy effect of multiple mechanisms: (i) increase biofilm formation capacity (3 ~ 4-fold); (ii) weaken the affinity of lipopolysaccharide (LPS) with N6NH2 (3 ~ 8-fold); and (iii) change the cell membrane permeability and potential. Interestingly, a chimeric peptide-G6, also a N6NH2 analog, which keep the same antibacterial activity to both wild-type and resistant clones (MIC value: 16 μg/mL), could curb N6NH2-resistant mutants by stronger inhibition of biofilm formation, stronger affinity with LPS, and stronger membrane permeability and depolarization than that of N6NH2.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All datasets generated for this study are included in the article/Supplementary material.

References

  • Callaway E (2020) ‘It will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures. Nature 588(7837):203–204

    Article  CAS  Google Scholar 

  • Camilo B, Vincent T, Christian K, Philip R, Robert B, Hinrich S, Gunther J (2017) Alternative evolutionary paths to bacterial antibiotic resistance cause distinct collateral effects. Mol Biol Evol 34(9):2229–2244

    Article  CAS  Google Scholar 

  • Cwiek K, Korzekwa K, Tabis A, Bania J, Bugla-Ploskonska G, Wieliczko A (2020) Antimicrobial resistance and biofilm formation capacity of Salmonella enterica serovar enteritidis strains isolated from poultry and humans in Poland. Pathogens 9(8):643

    Article  CAS  Google Scholar 

  • De Breij A, Riool M, Kwakman PHS, De Boer L, Cordfunke RA, Drijfhout JW, Cohen O, Emanuel N, Zaat SAJ, Nibbering PH (2016) Prevention of Staphylococcus aureus biomaterial-associated infections using a polymer-lipid coating containing the antimicrobial peptide OP-145. J Control Release 222:1–8

    Article  CAS  Google Scholar 

  • Elliott AG, Huang JX, Neve S, Zuegg J, Cooper MA (2020) An amphipathic peptide with antibiotic activity against multidrug-resistant Gram-negative bacteria. Nat Commun 11(1):3184

    Article  CAS  Google Scholar 

  • Fantner GE, Barbero RJ, Gray DS, Belcher AM (2010) Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy. Nat Nanotechnol 5(4):280–285

    Article  CAS  Google Scholar 

  • Guozhi B, Desiree Y, Regoes RR, Rolff J (2018) Predicting drug resistance evolution: insights from antimicrobial peptides and antibiotics. Proc R Soc Biol Sci U S A 285(1874):20172687

    Google Scholar 

  • Han H, Li T, Wang Z, Teng D, Mao R, Hao Y, Yang N, Wang X, Wang J (2020) Improved stability and activity of a marine peptide-N6NH2 against Edwardsiella tarda and its preliminary application in fish. Mar Drugs 18(12):650

    Article  CAS  Google Scholar 

  • Hart EM, Mitchell AM, Konovalova A, Grabowicz M, Silhavy TJ (2019) A small-molecule inhibitor of BamA impervious to efflux and the outer membrane permeability barrier. Proc Natl Acad Sci U S A 116(43):21748–21757

    Article  CAS  Google Scholar 

  • Jochumsen N, Marvig RL, Damkiær SR, Jensen RL, Paulander W, Molin SR, Jelsbak L, Folkesson A (2016) The evolution of antimicrobial peptide resistance in Pseudomonas aeruginosa is shaped by strong epistatic interactions. Nat Commun 7:13002

    Article  CAS  Google Scholar 

  • Kubicek-Sutherland JZ, Hava L, Martin V, Karin H, Hanne I, Andersson DI (2017) Antimicrobial peptide exposure selects for Staphylococcus aureus resistance to human defence peptides. J Antimicrob Chemother 72:115–127

    Article  CAS  Google Scholar 

  • Larock CN, Nizet V (2015) Cationic antimicrobial peptide resistance mechanisms of streptococcal pathogens. Biochim Biophys Acta Biomembr 11:3047–3054

    Article  CAS  Google Scholar 

  • Lazzaro BP, Zasloff M, Rolff J (2020) Antimicrobial peptides: application informed by evolution. Science 368(6490):eaau5480

    Article  CAS  Google Scholar 

  • Li Z, Teng D, Mao R, Wang X, Hao Y, Wang X, Wang J (2018) Improved antibacterial activity of the marine peptide N6 against intracellular Salmonella Typhimurium by conjugating with the cell-penetrating peptide Tat11 via a cleavable linker. J Med Chem 61(17):7991–8000

    Article  CAS  Google Scholar 

  • Li T, Wang Z, Han H, Teng D, Mao R, Hao Y, Yang N, Wang X, Wang J (2020) Dual antibacterial activities and biofilm eradication of a marine peptide-N6NH2 and its analogs against multidrug-resistant Aeromonas veronii. Int J Mol Sci 21(24):9637

    Article  CAS  Google Scholar 

  • Lofton H, Pranting M, Thulin E, Andersson DI (2013) Mechanisms and fitness costs of resistance to antimicrobial peptides LL-37, CNY100HL and wheat germ histones. PLos One 8(7):e68875

    Article  CAS  Google Scholar 

  • Lofton H, Anwar N, Rhen M, Andersson DI (2015) Fitness of Salmonella mutants resistant to antimicrobial peptides. J Antimicrob Chemother 70(2):432–440

    Article  CAS  Google Scholar 

  • Loh B, Grant C, Hancock RE (1984) Use of the fluorescent probe 1-N-phenylnaphthylamine to study the interactions of aminoglycoside antibiotics with the outer membrane of Pseudomonas aeruginosa. Antimicrob Agents Chemother 26(4):546–551

    Article  CAS  Google Scholar 

  • Luther A, Urfer M, Zahn M, Müller M, Obrecht D (2019) Chimeric peptidomimetic antibiotics against Gram-negative bacteria. Nature 576(7787):1–6

    Article  CAS  Google Scholar 

  • Malik SZ, Linkevicius M, Göransson U, Andersson DI (2017) Resistance to the cyclotide cycloviolacin O2 in Salmonella enterica caused by different mutations that often confer cross-resistance or collateral sensitivity to other antimicrobial peptides. Antimicrob Agents Chemother 61(8):e00684-e717

    Article  CAS  Google Scholar 

  • Martin JK, Sheehan JP, Bratton BP, Moore GM, Gitai Z (2020) A dual-mechanism antibiotic kills Gram-negative bacteria and avoids drug resistance. Cell 181(7):1518–1532

    Article  CAS  Google Scholar 

  • Oz T, Guvenek A, Yildiz S, Karaboga E, Tamer YT, Mumcuyan N, Ozan VB, Senturk GH, Cokol M, Yeh PJ (2014) Strength of selection pressure is an important parameter contributing to the complexity of antibiotic resistance evolution. Mol Biol Evol 31(9):2387–2401

    Article  CAS  Google Scholar 

  • Pal C, Papp B, Lazar V (2015) Collateral sensitivity of antibiotic-resistant microbes. Trends Microbiol 23(7):401–407

    Article  CAS  Google Scholar 

  • Pena-Miller R, Laehnemann D, Jansen G, Fuentes-Hernandez A, Rosenstiel P, Schulenburg H, Beardmore R, Read AF (2013) When the most potent combination of antibiotics selects for the greatest bacterial load: the smile-frown transition. PLoS Biol 11(4):e1001540

    Article  CAS  Google Scholar 

  • Puertolasbalint F, Warsi OM, Linkevicius M, Tang P, Andersson DI (2019) Mutations that increase expression of the EmrAB-TolC efflux pump confer increased resistance to nitroxoline in Escherichia coli. J Antimicrob Chemother 75(2):300–308

    Google Scholar 

  • Rosenkilde C, Munck C, Porse A, Linkevicius M, Andersson DI, Sommer M (2019) Collateral sensitivity constrains resistance evolution of the CTX-M-15 β-lactamase. Nat Commun 10(1):618

    Article  CAS  Google Scholar 

  • Satta G, Witney AA, Begum N, Ortiz Canseco J, Boa AN, McHugh TD (2020) Role of whole-genome sequencing in characterizing the mechanism of action of para-aminosalicylic acid and its resistance. Antimicrob Agents Chemother 64(9):e00675-e720

    Article  CAS  Google Scholar 

  • Shang D, Zhang Q, Dong W, Liang H, Bi X (2016) The effects of LPS on the activity of Trp-containing antimicrobial peptides against Gram-negative bacteria and endotoxin neutralization. Acta Biomater 33:153–165

    Article  CAS  Google Scholar 

  • Sims PJ, Waggoner AS, Wang CH, Hoffman JF (1974) Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles. Biochemistry 13(16):3315–3330

    Article  CAS  Google Scholar 

  • Song M, Liu Y, Huang X, Ding S, Zhu K (2020) A broad-spectrum antibiotic adjuvant reverses multidrug-resistant Gram-negative pathogens. Nat Microbiol 5(8):1–11

    Article  CAS  Google Scholar 

  • Sousa MC (2019) New antibiotics target the outer membrane of bacteria. Nature 576(7787):389–390

    Article  CAS  Google Scholar 

  • Spodsberg N (2006) Polypeptides having antimicrobial activity and polynucleotides encoding same, Patent, 2006 NO. 20060706125

  • Spohn R, Daruka L, Lazar V, Martins A, Vidovics F, Grezal G, Mehi O, Kintses B, Szamel M, Jangir PK, Csorgo B, Gyorkei A, Bodi Z, Farago A, Bodai L, Foldesi I, Kata D, Maroti G, Pap B, Wirth R, Papp B, Pal C (2019) Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. Nat Commun 10(1):4538

    Article  CAS  Google Scholar 

  • Wang Z, Liu X, Teng D, Mao R, Wang J (2020) Development of chimeric peptides to facilitate the neutralisation of lipopolysaccharides during bactericidal targeting of multidrug-resistant Escherichia coli. Commun Biol 3(1):41

    Article  CAS  Google Scholar 

  • Wistrand-Yuen E, Knopp M, Hjort K, Koskiniemi S, Berg OG, Andersson DI (2018) Evolution of high-level resistance during low-level antibiotic exposure. Nat Commun 9(1):1599

    Article  CAS  Google Scholar 

  • Yang N, Liu X, Teng D, Li Z, Wang X, Mao R, Wang X, Hao Y, Wang J (2017) Antibacterial and detoxifying activity of NZ17074 analogues with multi-layers of selective antimicrobial actions against Escherichia coli and Salmonella enteritidis. Sci Rep 7(1):3392–3392

    Article  CAS  Google Scholar 

  • Yu I, Meyer KJ, Akira I, Quentin FG, Robert G, Sylvie M, Mariaelena C, Miho M, Samantha N, Meghan G (2020) A new antibiotic selectively kills Gram-negative pathogens. Nature 576(7787):459–464

    Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395

    Article  CAS  Google Scholar 

  • Zhang Q, Yang N, Mao R, Hao Y, Ma X, Teng D, Fan H, Wang J (2021) A recombinant fungal defensin-like peptide-P2 combats Streptococcus dysgalactiae and biofilms. Appl Microbiol Biotechnol 105(4):1489–1504

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grants No. 31772640, No. 31572444, and No. 31572445) and Direction of Antibiotic Peptides and Alternatives to Antibiotics, the Agricultural Science and Technology Innovation Program (CAAS-ASTIP-2013-FRI-02) and Key Project of Alternatives to Antibiotic for Feed Usages of ASTIP (CAAS-ZDXT2018008) in CAAS.

Author information

Authors and Affiliations

Authors

Contributions

Z.L.W., R.Y.M., and J.H.W. conceived and designed the experiments; Z.L.W. conducted the experiments; N.Y. and D.T. supervised the work; N.Y., D.T., Y.H., T.L., and H.H.H. provided some data analysis and revised the final version of the manuscript; Z.L.W., N.Y., R.Y.M., and J.H.W. wrote the manuscript.

Corresponding authors

Correspondence to Ruoyu Mao or Jianhua Wang.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1181 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Yang, N., Teng, D. et al. Resistance response to Arenicin derivatives in Escherichia coli. Appl Microbiol Biotechnol 106, 211–226 (2022). https://doi.org/10.1007/s00253-021-11708-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-021-11708-x

Keywords

Navigation