Skip to main content
Log in

Class I myosin mediated endocytosis and polarization growth is essential for pathogenicity of Magnaporthe oryzae

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In eukaryotes, myosin provides the necessary impetus for a series of physiological processes, including organelle movement, cytoplasmic flow, cell division, and mitosis. Previously, three members of myosin were identified in Magnaporthe oryzae, with class II and class V myosins playing important roles in intracellular transport, fungal growth, and pathogenicity. However, limited is known about the biological function of the class I myosin protein in the rice blast fungus. Here, we found that Momyo1 is highly expressed during conidiation and infection. Functional characterization of this gene via RNA interference (RNAi) revealed that Momyo1 is required for vegetative growth, conidiation, melanin pigmentation, and pathogenicity of M. oryzae. The Momyo1 knockdown mutant is defective in formation of appressorium-like structures (ALS) at the hyphal tips. In addition, Momyo1 also displays defects on cell wall integrity, hyphal hydrophobicity, extracellular enzyme activities, endocytosis, and formation of the Spitzenkörper. Furthermore, Momyo1 was identified to physically interact with the MoShe4, a She4p/Dim1p orthologue potentially involved in endocytosis, polarization of the actin cytoskeleton. Overall, our findings provide a novel insight into the regulatory mechanism of Momyo1 that is involved in fungal growth, cell wall integrity, endocytosis, and virulence of M. oryzae.

Key points

• Momyo1 is required for vegetative growth and pigmentation of M. oryzae.

• Momyo1 is essential for cell wall integrity and endocytosis of M. oryzae.

• Momyo1 is involved in hyphal surface hydrophobicity of M. oryzae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data analyzed during this study are included in this published article (and its supplementary information files).

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  • Adams TH, Wieser JK, Yu JH (1998) Asexual sporulation in Aspergillus nidulans. Microbiol Mol Biol Rev 62(1):35–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altmann K, Frank M, Neumann D, Jakobs S, Westermann B (2008) The class V myosin motor protein, Myo2, plays a major role in mitochondrial motility in Saccharomyces cerevisiae. J Cell Biol 181(1):119–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arratia-Quijada J, Sanchez O, Scazzocchio C, Aguirre J (2012) FlbD, a Myb transcription factor of Aspergillus nidulans, is uniquely involved in both asexual and sexual differentiation. Eukaryot Cell 11(9):1132–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown SS (1997) Myosins in yeast. Curr Opin Cell Biol 9(1):44–48

    Article  CAS  PubMed  Google Scholar 

  • Bulik DA, Olczak M, Lucero HA, Osmond BC, Robbins PW, Specht CA (2003) Chitin synthesis in Saccharomyces cerevisiae in response to supplementation of growth medium with glucosamine and cell wall stress. Eukaryot Cell 2(5):886–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chien CT, Bartel PL, Sternglanz R, Fields S (1991) The two-hybrid system: A method to identify and clone genes for proteins that interact with a protein of interest. Proc Nat Acad Sci USA 88:9578–9582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi M-H, Park S-Y, Kim S, Lee Y-H (2009) A novel pathogenicity gene is required in the rice blast fungus to suppress the basal defenses of the host. PLoS Pathog 5(4):e1000401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13(4):414–430

    Article  PubMed  PubMed Central  Google Scholar 

  • Dou XY, Wang Q, Qi ZQ, Song WW, Wang W, Guo M, Zhang HF, Zhang ZG, Wang P, Zheng XB (2011) MoVam7, a conserved SNARE involved in vacuole assembly, is required for growth, endocytosis, ROS accumulation, and pathogenesis of Magnaporthe oryzae. PLoS One 6(1):e16439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elorza MV, Rico H, Sentandreu R (1983) Calcofluor white alters the assembly of chitin fibrils in Saccharomyces cerevisiae and Candida albicans cells. J Gen Microbiol 129(5):1577–1582

    CAS  PubMed  Google Scholar 

  • Fischer-Parton S, Parton RM, Hickey PC, Dijksterhuis J, Atkinson HA, Read ND (2000) Confocal microscopy of FM4-64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. J Microsc 198:246–259

    Article  CAS  PubMed  Google Scholar 

  • Foth BJ, Goedecke MC, Soldati D (2006) New insights into myosin evolution and classification. Proc Natl Acad Sci USA 103(10):3681–3686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujikawa T, Kuga Y, Yano S, Yoshimi A, Tachiki T, Abe K, Nishimura M (2009) Dynamics of cell wall components of Magnaporthe grisea during infectious structure development. Mol Microbiol 73(4):553–570

    Article  CAS  PubMed  Google Scholar 

  • Geli MI, Riezman H (1996) Role of type I myosins in receptor-mediated endocytosis in yeast. Science 272(5261):533–535

    Article  CAS  PubMed  Google Scholar 

  • Giraldo MC, Dagdas YF, Gupta YK, Mentlak TA, Yi M, Martinez-Rocha AL, Saitoh H, Terauchi R, Talbot NJ, Valent B (2013) Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nat Commun 4:1996

    Article  PubMed  CAS  Google Scholar 

  • Goodson HV, Anderson BL, Warrick HM, Pon LA, Spudich JA (1996) Synthetic lethality screen identifies a novel yeast myosin I gene (MYO5): myosin I proteins are required for polarization of the actin cytoskeleton. J Cell Biol 133(6):1277–1291

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Chen Y, Du Y, Dong Y, Guo W, Zhai S, Zhang H, Dong S, Zhang Z, Wang Y, Wang P, Zheng X (2011) The bZIP transcription factor MoAP1 mediates the oxidative stress response and is critical for pathogenicity of the rice blast fungus Magnaporthe oryzae. PLoS Pathog 7(2):e1001302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo M, Gao F, Zhu XL, Nie X, Pan YM, Gao ZM (2015) MoGrr1, a novel F-box protein, is involved in conidiogenesis and cell wall integrity and is critical for the full virulence of Magnaporthe oryzae. Appl Microbiol Biotechnol 99(19):8075–8088

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Guo W, Chen Y, Dong S, Zhang X, Zhang H, Song W, Wang W, Wang Q, Lv R, Zhang Z, Wang Y, Zheng X (2010) The basic leucine zipper transcription factor Moatf1 mediates oxidative stress responses and is necessary for full virulence of the rice blast fungus Magnaporthe oryzae. Mol Plant Microbe Interact 23(8):1053–1068

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Tan LY, Nie X, Zhang ZG (2017) A class-II myosin is required for growth, conidiation, cell wall integrity and pathogenicity of Magnaporthe oryzae. Virulence 8(7):1335–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo M, Tan LY, Nie X, Zhu XL, Pan YM, Gao ZM (2016) The pmt2p-mediated protein O-mannosylation is required for morphogenesis, adhesive properties, cell wall integrity and full virulence of Magnaporthe oryzae. Front Microbiol 7:630

    PubMed  PubMed Central  Google Scholar 

  • Harris SD, Morrell JL, Hamer JE (1994) Identification and characterization of Aspergillus nidulans mutants defective in cytokinesis. Genetics 136(2):517–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howard RJ, Valent B (1996) Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu Rev Microbiol 50:491–512

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Zhang SP, Yin ZY, Liu MX, Li B, Zhang HF, Zheng XB, Wang P, Zhang ZG (2017) MoVrp1, a putative verprolin protein, is required for asexual development and infection in the rice blast fungus Magnaporthe oryzae. Sci Rep 7:41148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon J, Goh J, Yoo S, Chi MH, Choi J, Rho HS, Park J, Han SS, Kim BR, Park SY, Kim S, Lee YH (2008) A putative MAP kinase kinase kinase, MCK1, is required for cell wall integrity and pathogenicity of the rice blast fungus Magnaporthe Oryzae. Mol Plant Microbe Interact 21(5):525–534

    Article  CAS  PubMed  Google Scholar 

  • Kershaw MJ, Talbot NJ (1998) Hydrophobins and repellents: proteins with fundamental roles in fungal morphogenesis. Fungal Genet Biol 23(1):18–33

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Park SY, Kim KS, Rho HS, Chi MH, Choi J, Park J, Kong S, Park J, Goh J, Lee YH (2009) Homeobox transcription factors are required for conidiation and appressorium development in the rice blast fungus Magnaporthe oryzae. PLoS Genet 5(12):e1000757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kollmar M (2006) Thirteen is enough: the myosins of Dictyostelium discoideum and their light chains. BMC Genomics 7:183

    Article  PubMed  PubMed Central  Google Scholar 

  • Kong LA, Yang J, Li GT, Qi LL, Zhang YJ, Wang CF, Zhao WS, Xu JR, Peng YL (2012) Different chitin synthase genes are required for various developmental and plant infection processes in the rice blast fungus Magnaporthe oryzae. PLoS Pathog 8(2):e1002526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunova A, Pizzatti C, Bonaldi M, Cortesi P (2014) Sensitivity of nonexposed and exposed populations of Magnaporthe oryzae from rice to tricyclazole and azoxystrobin. Plant Dis 98(4):512–518

    Article  CAS  PubMed  Google Scholar 

  • Lee BN, Adams TH (1994) The Aspergillus nidulans fluG gene is required for production of an extracellular developmental signal and is related to prokaryotic glutamine synthetase I. Genes Dev 8(6):641–651

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Singh P, Chung WC, Ash J, Kim TS, Hang L, Park S (2006) Light regulation of asexual development in the rice blast fungus Magnaporthe Oryzae. Fungal Genet Biol 43(10):694–706

    Article  CAS  PubMed  Google Scholar 

  • Li YB, Xu R, Liu C, Shen N, Han LB, Tang D (2020) Magnaporthe oryzae fimbrin organizes actin networks in the hyphal tip during polar growth and pathogenesis. PLoS Pathog 16(3):e1008437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Zhou Q, Guo Z, Liu P, Shen L, Chai N, Qian B, Cai Y, Wang W, Yin Z, Zhang H, Zheng X, Zhang Z (2020) A self-balancing circuit centered on MoOsm1 kinase governs adaptive responses to host-derived ROS in Magnaporthe oryzae. eLife 9. https://doi.org/10.7554/eLife.61605

  • McGoldrick CA, Gruver C, May GS (1995) myoA of Aspergillus nidulans encodes an essential myosin I required for secretion and polarized growth. J Cell Biol 128(4):577–587

    Article  CAS  PubMed  Google Scholar 

  • Mehrabi R, Ding S, Xu JR (2008) MADS-box transcription factor Mig1 is required for infectious growth in Magnaporthe grisea. Eukaryot Cell 7(5):791–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mooseker MS, Cheney RE (1995) Unconventional myosins. Annu Rev Cell Dev Biol 11:633–675

    Article  CAS  PubMed  Google Scholar 

  • Nakayashiki H, Hanada S, Quoc NB, Kadotani N, Tosa Y, Mayama S (2005) RNA silencing as a tool for exploring gene function in ascomycete fungi. Fungal Genet Biol 42(4):275–283

    Article  CAS  PubMed  Google Scholar 

  • Osherov N, Yamashita RA, Chung YS, May GS (1998) Structural requirements for in vivo myosin I function in Aspergillus nidulans. J Biol Chem 273(41):27017–27025

    Article  CAS  PubMed  Google Scholar 

  • Pan YM, Pan R, Tan LY, Zhang ZG, Guo M (2019) Pleiotropic roles of O-mannosyltransferase MoPmt4 in development and pathogenicity of Magnaporthe oryzae. Curr Genet 65(1):241–241

    Article  CAS  PubMed  Google Scholar 

  • Penn TJ, Wood ME, Soanes DM, Csukai M, Corran AJ, Talbot NJ (2015) Protein kinase C is essential for viability of the rice blast fungus Magnaporthe oryzae. Mol Microbiol 98(3):403–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi ZQ, Wang Q, Dou XY, Wang W, Zhao Q, Lv RL, Zhang HF, Zheng XB, Wang P, Zhang ZG (2012) MoSwi6, an APSES family transcription factor, interacts with MoMps1 and is required for hyphal and conidial morphogenesis, appressorial function and pathogenicity of Magnaporthe oryzae. Mol Plant Pathol 13(7):677–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ram AF, Wolters A, Ten Hoopen R, Klis FM (1994) A new approach for isolating cell wall mutants in Saccharomyces cerevisiae by screening for hypersensitivity to calcofluor white. Yeast 10(8):1019–1030

    Article  CAS  PubMed  Google Scholar 

  • Renshaw H, Vargas-Muniz JM, Richards AD, Asfaw YG, Juvvadi PR, Steinbach WJ (2016) Distinct roles of myosins in Aspergillus fumigatus hyphal growth and pathogenesis. Infect Immun 84(5):1556–1564

    Article  PubMed  PubMed Central  Google Scholar 

  • Sebe-Pedros A, Grau-Bove X, Richards TA, Ruiz-Trillo I (2014) Evolution and classification of myosins, a paneukaryotic whole-genome approach. Genome Biol Evol 6(2):290–305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shelp BJ, Bown AW, McLean MD (1999) Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci 4(11):446–452

    Article  CAS  PubMed  Google Scholar 

  • Shi Z, Leung H (1995) Genetic analysis of sporulation in Magnaporthe grisea by chemical and insertional mutagenesis. Mol Plant Microbe Interact 8:949–959

    Article  CAS  Google Scholar 

  • Sietsma JH, Beth Din A, Ziv V, Sjollema KA, Yarden O (1996) The localization of chitin synthase in membranous vesicles (chitosomes) in Neurospora crassa. Microbiology 142(Pt 7):1591–1596

    Article  CAS  PubMed  Google Scholar 

  • Steinberg G (2007) Hyphal growth: a tale of motors, lipids, and the Spitzenkörper. Eukaryot Cell 6:351–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song WW, Dou XY, Qi ZQ, Wang Q, Zhang X, Zhang HF, Guo M, Dong SM, Zhang ZG, Wang P, Zheng XB (2010) R-SNARE homolog MoSec22 is required for conidiogenesis, cell wall integrity, and pathogenesis of Magnaporthe oryzae. PLoS One 5(10): e13193

  • Sweigard JA, Chumley FG, Valent B (1992) Disruption of a Magnaporthe grisea cutinase gene. Mol Gen Genet 232(2):183–190

    Article  CAS  PubMed  Google Scholar 

  • Schliwa M, Woehlke G (2003) Molecular motors. Nature 422:759–765

    Article  CAS  PubMed  Google Scholar 

  • Song B, Li HP, Zhang JB, Wang JH, Gong AD, Song XS, Chen T, Liao YC (2013) Type II myosin gene in Fusarium graminearum is required for septation, development, mycotoxin biosynthesis and pathogenicity. Fungal Genet Biol 54:60–70

    Article  CAS  PubMed  Google Scholar 

  • Taheri-Talesh N, Xiong Y, Oakley BR (2012) The functions of Myosin II and Myosin V homologs in tip growth and septation in Aspergillus nidulans. PLoS One 7(2)

  • Takeshita N, Yamashita S, Ohta A, Horiuchi H (2006) Aspergillus nidulans class V and VI chitin synthases CsmA and CsmB, each with a myosin motor-like domain, perform compensatory functions that are essential for hyphal tip growth. Mol Microbiol 59(5):1380–1394

    Article  CAS  PubMed  Google Scholar 

  • Talbot NJ (2003) On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu Rev Microbiol 57:177–202

    Article  CAS  PubMed  Google Scholar 

  • Talbot NJ, Ebbole DJ, Hamer JE (1993) Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5(11):1575–1590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka K, Matsui Y (2001) Functions of unconventional myosins in the yeast Saccharomyces cerevisiae. Cell Struct Funct 26(6):671–675

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Gao CY, Wang JZ, Yin ZY, Zhang JL, Ji J, Zhang HF, Zheng XB, Zhang ZG, Wang P (2018) Disruption of actin motor function due to MoMyo5 mutation impairs host penetration and pathogenicity in Magnaporthe oryzae. Mol Plant Pathol 19(3):689–699

    Article  CAS  PubMed  Google Scholar 

  • Toi H, Fujimura-Kamada K, Irie K, Takai Y, Todo S, Tanaka K (2003) She4p/Dim1p interacts with the motor domain of unconventional myosins in the budding yeast Saccharomyces Cerevisiae. Mol Biol Cell 14(6):2237–2249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallen EA, Caviston J, Bi E (2000) Roles of Hof1p, Bni1p, Bnr1p, and myo1p in cytokinesis in Saccharomyces cerevisiae. Mol Biol Cell 11(2):593–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber I, Gruber C, Steinberg G (2003) A class-V myosin required for mating, hyphal growth, and pathogenicity in the dimorphic plant pathogen Ustilago maydis. Plant Cell 15(12):2826–2842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo M, Lee K, Song K (2003) MYO2 is not essential for viability, but is required for polarized growth and dimorphic switches in Candida albicans. FEMS Microbiol Lett 218(1):195–202

    Article  CAS  PubMed  Google Scholar 

  • Wang JM, Du Y, Zhang HF, Zhou C, Qi ZQ, Zheng XB, Wang P, Zhang ZG (2013) The actin-regulating kinase homologue MoArk1 plays a pleiotropic function in Magnaporthe oryzae. Mol Plant Pathol 14(5):470–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu JR, Staiger CJ, Hamer JE (1998) Inactivation of the mitogen-activated protein kinase Mps1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses. Proc Natl Acad Sci USA 95(21):12713–12718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan X, Li Y, Yue XF, Wang CC, Que YW, Kong DD, Ma ZH, Talbot NJ, Wang ZY (2011) Two novel transcriptional regulators are essential for infection-related morphogenesis and pathogenicity of the rice blast fungus Magnaporthe oryzae. PLoS Pathog 7(12):e1002385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin ZY, Tang W, Wang JZ, Liu XY, Yang LN, Gao CY, Zhang JL, Zhang HF, Zheng XB, Wang P, Zhang ZG (2016) Phosphodiesterase MoPdeH targets MoMck1 of the conserved mitogen-activated protein (MAP) kinase signalling pathway to regulate cell wall integrity in rice blast fungus Magnaporthe oryzae. Mol Plant Pathol 17(5):654–668

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Chen Y, Yin Y, Ji HH, Shim WB, Hou Y, Zhou M, Li XD, Ma Z (2015) A small molecule species specifically inhibits Fusarium myosin I. Environ Microbiol 17(8):2735–2746

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zhao Q, Guo X, Guo M, Qi Z, Tang W, Dong Y, Ye W, Zheng X, Wang P, Zhang Z (2014) Pleiotropic function of the putative zinc-finger protein MoMsn2 in Magnaporthe oryzae. Mol Plant Microbe Interact 27(5):446–460

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zheng X, Zhang Z (2016) The Magnaporthe grisea species complex and plant pathogenesis. Mol Plant Pathol 17(6):796–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Foundation for the Author of National Excellent Doctoral Dissertation of PR China (Grant No: 201470 to MG), the National Natural Science Foundations of China (Grant No: 31671976 to MG), the Foundation for the Excellent Talents of Anhui Agricultural University (Grant No: RC2015002 to MG), and the Anhui Agricultural University Postgraduate Innovation Foundation (Grant No. 2020ysj-8 to ZCC).

Author information

Authors and Affiliations

Authors

Contributions

CCZ measured phenotypes, analyzed the data, and wrote the manuscript. ZWW measured phenotypes, constructed strains for Co-Ip, revised the manuscript. SLZ help to write the manuscript. GGY participated in the writing and modification of the manuscript. LYT conducted construction of RNAi mutants, preparation of experimental materials, analyzation of the data. MG conceived and designed the experiments, analyzed the data, and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Min Guo.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 640 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, C., Zhang, W., Zhang, S. et al. Class I myosin mediated endocytosis and polarization growth is essential for pathogenicity of Magnaporthe oryzae. Appl Microbiol Biotechnol 105, 7395–7410 (2021). https://doi.org/10.1007/s00253-021-11573-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-021-11573-8

Keywords

Navigation