Skip to main content

Advertisement

Log in

A strategic approach to apply bacterial substances for increasing metabolite productions of Euglena gracilis in the bioreactor

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bacterial extracellular polymeric substances (EPS) are promising materials that have a role in enhancing growth, metabolite production, and harvesting efficiency. However, the validity of the EPS effectiveness in scale-up cultivation of microalgae is still unknown. Therefore, in order to verify whether the bacterial metabolites work in the scale-up fermentation of microalgae, we conducted a bioreactor fermentation following the addition of bacterial EPS derived from the marine bacterium, Pseudoalteromonas sp., to Euglena gracilis. Various culture strategies (i.e., batch, glucose fed-batch, and glucose and EPS fed-batch) were conducted to maximize metabolite production of E. gracilis in scale-up cultivation. Consequently, biomass and paramylon concentrations in the continuous glucose and EPS-treated culture were enhanced by 3.0-fold and 4.2-fold (36.1 ± 1.4 g L−1 and 25.6 ± 0.1 g L−1), respectively, compared to the non-treated control (12.0 ± 0.3 g L−1 and 6.1 ± 0.1 g L−1). Also, the supplementation led to the enhanced concentrations of α-tocopherols and total fatty acids by 3.7-fold and 2.8-fold, respectively. The harvesting efficiency was enhanced in EPS-supplemented cultivation due to the flocculation of E. gracilis. To the best of our knowledge, this is the first study that verifies the effect of bacterial EPS in scale-up cultivation of microalgae. Also, our results showed the highest paramylon productivity than any other previous reports. The results obtained in this study showed that the scale-up cultivation of E. gracilis using bacterial EPS has the potential to be used as a platform to guide further increases in scale and in the industrial environment.

Key points

  • Effect of EPS on Euglena gracilis fermentation was tested in bioreactor scale.

  • EPS supplement was effective for the paramylon, α-tocopherol, and lipid production.

  • EPS supplement induced the flocculation of E. gracilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  • Alba MA, Sánchez RR, Pérez NJR, Navarrete JS, Paz RF, Montoya-Estrada A, Gómez JJH (2008) Comparative study of the antimutagenic properties of vitamins C and E against mutation induced by norfloxacin. BMC Pharmacol 8(1):2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barrow C, Shahidi F (2007) Marine nutraceuticals and functional foods. CRC Press

  • Buetow DE (1968) The biology of Euglena.

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  PubMed  Google Scholar 

  • Clarke A, Stone B (1960) Structure of the paramylon from Euglena gracilis. Biochim Biophys Acta 44:161–163

    Article  CAS  PubMed  Google Scholar 

  • Decho AW (1990) Microbial exopolymer secretions in ocean environments: their role (s) in food webs and marine processes. Oceanogr Mar Biol Annu Rev 28(7):73–153

    Google Scholar 

  • Decho AW, Gutierrez T (2017) Microbial extracellular polymeric substances (EPSs) in ocean systems. Front Microbiol 8:922

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuggi A, Di Martino RV, Vona V, Rigano C (1981) Nitrate and ammonium assimilation in algal cell-suspensions and related pH variations in the external medium, monitored by electrodes. Plant Sci Lett 23(2):129–138

    Article  CAS  Google Scholar 

  • Furuhashi T, Ogawa T, Nakai R, Nakazawa M, Okazawa A, Padermschoke A, Nishio K, Hirai MY, Arita M, Ohta D (2015) Wax ester and lipophilic compound profiling of Euglena gracilis by gas chromatography-mass spectrometry: toward understanding of wax ester fermentation under hypoxia. Metabolomics 11(1):175–183

    Article  CAS  Google Scholar 

  • Gan H, Enomoto Y, Kabe T, Ishii D, Hikima T, Takata M, Iwata T (2017) Synthesis, properties and molecular conformation of paramylon ester derivatives. Polym Degrad Stab 145:142–149

    Article  CAS  Google Scholar 

  • Gissibl A, Sun A, Care A, Nevalainen H, Sunna A (2019) Bioproducts from Euglena gracilis: synthesis and applications. Front Bioengin Biotech 7:108

    Article  Google Scholar 

  • Green AG (2004) From alpha to omega—producing essential fatty acids in plants. Nat Biotechnol 22(6):680–682

    Article  CAS  PubMed  Google Scholar 

  • Grimm P, Risse JM, Cholewa D, Müller JM, Beshay U, Friehs K, Flaschel E (2015) Applicability of Euglena gracilis for biorefineries demonstrated by the production of α-tocopherol and paramylon followed by anaerobic digestion. J Biotechnol 215:72–79

    Article  CAS  PubMed  Google Scholar 

  • Hasan MT, Sun A, Mirzaei M, Te’o J, Hobba G, Sunna A, Nevalainen H (2017) A comprehensive assessment of the biosynthetic pathways of ascorbate, α-tocopherol and free amino acids in Euglena gracilis var. saccharophila. Algal Res 27:140–151

    Article  Google Scholar 

  • Hassler CS, Schoemann V, Nichols CM, Butler EC, Boyd PW (2011) Saccharides enhance iron bioavailability to Southern Ocean phytoplankton. Proc Natl Acad Sci 108(3):1076–1081

    Article  CAS  PubMed  Google Scholar 

  • Inui H, Miyatake K, Nakano Y, Kitaoka S (1982) Wax ester fermentation in Euglena gracilis. FEBS Lett 150(1):89–93

    Article  CAS  Google Scholar 

  • Inui H, Ishikawa T, Tamoi M (2017) Wax ester fermentation and its application for biofuel production. In: Schwartzbach SD, Shigeoka S (eds) Euglena: biochemistry, cell and molecular biology. Springer International Publishing, Cham, pp 269–283

    Chapter  Google Scholar 

  • Inwongwan S, Kruger NJ, Ratcliffe RG, O’Neill EC (2019) Euglena central metabolic pathways and their subcellular locations. Metabolites 9(6):115

    Article  CAS  PubMed Central  Google Scholar 

  • Israilides C, Smith A, Harthill J, Barnett C, Bambalov G, Scanlon B (1998) Pullulan content of the ethanol precipitate from fermented agro-industrial wastes. Appl Microbiol Biotechnol 49(5):613–617

    Article  CAS  Google Scholar 

  • Ivušić F, Šantek B (2015) Optimization of complex medium composition for heterotrophic cultivation of Euglena gracilis and paramylon production. Bioprocess Biosyst Eng 38(6):1103–1112

    Article  PubMed  CAS  Google Scholar 

  • Jacob-Lopes E, Mérida LR, Queiroz MI, Zepka LQ (2015) Microalgal biorefineries. Jacob-Lopes and Queiroz (ed) Biomass production and uses Rijeka: InTech:81-106

  • Jeon MS, Oh J-J, Kim JY, Han S-I, Sim SJ, Choi Y-E (2019) Enhancement of growth and paramylon production of Euglena gracilis by co-cultivation with Pseudoalteromonas sp. MEBiC 03485. Bioresour Technol 288:121513

    Article  CAS  PubMed  Google Scholar 

  • Khatiwada B, Kautto L, Sunna A, Sun A, Nevalainen H (2019) Nuclear transformation of the versatile microalga Euglena gracilis. Algal Res 37:178–185

    Article  Google Scholar 

  • Kim JY, Oh J-J, Jeon MS, Kim G-H, Choi Y-E (2019) Improvement of Euglena gracilis paramylon production through a cocultivation strategy with the indole-3-acetic acid-producing bacterium Vibrio natriegens. App Environ Biotech 85(19):e01548–e01519

  • Kim S, Lee D, Lim D, Lim S, Park S, Kang C, Yu J, Lee T (2020) Paramylon production from heterotrophic cultivation of Euglena gracilis in two different industrial byproducts: corn steep liquor and brewer’s spent grain. Algal Res 47:101826

    Article  Google Scholar 

  • Kottuparambil S, Thankamony RL, Agusti S (2019) Euglena as a potential natural source of value-added metabolites. A review. Algal Res 37:154–159

    Article  Google Scholar 

  • Krajčovič J, Vesteg M, Schwartzbach SD (2015) Euglenoid flagellates: a multifaceted biotechnology platform. J Biotechnol 202:135–145

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Cho D-H, Ramanan R, Kim B-H, Oh H-M, Kim H-S (2013) Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris. Bioresour Technol 131:195–201

    Article  CAS  PubMed  Google Scholar 

  • Murphree CA, Dums JT, Jain SK, Zhao C, Young DY, Khoshnoodi N, Tikunov A, Macdonald J, Pilot G, Sederoff H (2017) Amino acids are an ineffective fertilizer for Dunaliella spp. growth. Frontiers in. Plant Sci 8:847

    Google Scholar 

  • Nakazawa M, Andoh H, Koyama K, Watanabe Y, Nakai T, Ueda M, Sakamoto T, Inui H, Nakano Y, Miyatake K (2015) Alteration of wax ester content and composition in Euglena gracilis with gene silencing of 3-ketoacyl-CoA thiolase isozymes. Lipids 50(5):483–492

    Article  CAS  PubMed  Google Scholar 

  • Ndikubwimana T, Zeng X, Liu Y, Chang J-S, Lu Y (2014) Harvesting of microalgae Desmodesmus sp. F51 by bioflocculation with bacterial bioflocculant. Algal Res 6:186–193

    Article  Google Scholar 

  • Ogawa T, Tamoi M, Kimura A, Mine A, Sakuyama H, Yoshida E, Maruta T, Suzuki K, Ishikawa T, Shigeoka S (2015) Enhancement of photosynthetic capacity in Euglena gracilis by expression of cyanobacterial fructose-1, 6-/sedoheptulose-1, 7-bisphosphatase leads to increases in biomass and wax ester production. Biotechnology for Biofuels 8(1):80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ogbonna JC, Tomiyamal S, Tanaka H (1998) Heterotrophic cultivation of Euglena gracilis Z for efficient production of α-tocopherol. J Appl Phycol 10(1):67–74

    Article  CAS  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65(6):635–648

    Article  CAS  PubMed  Google Scholar 

  • Rahman KM (2020) Food and high value products from microalgae: market opportunities and challenges microalgae biotechnology for food, health and high value products. Springer:3–27

  • Rodríguez-Zavala J, Ortiz-Cruz M, Mendoza-Hernández G, Moreno-Sánchez R (2010) Increased synthesis of α-tocopherol, paramylon and tyrosine by Euglena gracilis under conditions of high biomass production. J Appl Microbiol 109(6):2160–2172

    Article  PubMed  CAS  Google Scholar 

  • Russo R, Barsanti L, Evangelista V, Frassanito AM, Longo V, Pucci L, Penno G, Gualtieri P (2017) Euglena gracilis paramylon activates human lymphocytes by upregulating pro-inflammatory factors. Food Science & Nutrition 5(2):205–214

    Article  CAS  Google Scholar 

  • Salim S, Bosma R, Vermuë MH, Wijffels RH (2011) Harvesting of microalgae by bio-flocculation. J Appl Phycol 23(5):849–855

    Article  PubMed  Google Scholar 

  • Sano M, Ernesto C, Thomas RG, Klauber MR, Schafer K, Grundman M, Woodbury P, Growdon J, Cotman CW, Pfeiffer E (1997) A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. N Engl J Med 336(17):1216–1222

    Article  CAS  PubMed  Google Scholar 

  • Šantek B, Felski M, Friehs K, Lotz M, Flaschel E (2010) Production of paramylon, a β-1, 3-glucan, by heterotrophic cultivation of Euglena gracilis on potato liquor. Eng Life Sci 10(2):165–170

    Google Scholar 

  • Šantek B, Friehs K, Lotz M, Flaschel E (2012) Production of paramylon, a β-1, 3-glucan, by heterotrophic growth of Euglena gracilis on potato liquor in fed-batch and repeated-batch mode of cultivation. Eng Life Sci 12(1):89–94

    Article  CAS  Google Scholar 

  • Schwarzhans J-P, Cholewa D, Grimm P, Beshay U, Risse J-M, Friehs K, Flaschel E (2015) Dependency of the fatty acid composition of Euglena gracilis on growth phase and culture conditions. J Appl Phycol 27(4):1389–1399. https://doi.org/10.1007/s10811-014-0458-4

    Article  CAS  Google Scholar 

  • Suzuki K (2017) Large-scale cultivation of Euglena. Euglena: biochemistry, cell and molecular biology:285–293

  • Suzuki K, Nakano R, Yamaguchi H, Maruta A, Nakano Y (2013) Function of paramylon from Euglena gracilis as filler. J Soc Pow Tech, Japan 50(10):728–732

    Article  CAS  Google Scholar 

  • Takeyama H, Kanamaru A, Yoshino Y, Kakuta H, Kawamura Y, Matsunaga T (1997) Production of antioxidant vitamins, β-carotene, vitamin C, and vitamin E, by two-step culture of Euglena gracilis Z. Biotechnol Bioeng 53(2):185–190

    Article  CAS  PubMed  Google Scholar 

  • Tani Y, Tsumura H (1989) Screening for tocopherol-producing microorganisms and α-tocopherol production by Euglena gracilis Z. Agric Biol Chem 53(2):305–312

    CAS  Google Scholar 

  • Tossavainen M, Ilyass U, Ollilainen V, Valkonen K, Ojala A, Romantschuk M (2019) Influence of long term nitrogen limitation on lipid, protein and pigment production of Euglena gracilis in photoheterotrophic cultures. PeerJ 7:e6624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ummalyma SB, Gnansounou E, Sukumaran RK, Sindhu R, Pandey A, Sahoo D (2017) Bioflocculation: an alternative strategy for harvesting of microalgae–an overview. Bioresour Technol 242:227–235

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Seppänen-Laakso T, Rischer H, Wiebe MG (2018) Euglena gracilis growth and cell composition under different temperature, light and trophic conditions. PLoS One 13(4)

  • Watanabe T, Shimada R, Matsuyama A, Yuasa M, Sawamura H, Yoshida E, Suzuki K (2013) Antitumor activity of the β-glucan paramylon from Euglena against preneoplastic colonic aberrant crypt foci in mice. Food Funct 4(11):1685–1690

    Article  CAS  PubMed  Google Scholar 

  • Wilburn E, Mahan D, Hill D, Shipp T, Yang H (2008) An evaluation of natural (RRR-α-tocopheryl acetate) and synthetic (all-rac-α-tocopheryl acetate) vitamin E fortification in the diet or drinking water of weanling pigs. J Anim Sci 86(3):584–591

    Article  CAS  PubMed  Google Scholar 

  • Yoshida Y, Saito Y, Jones LS, Shigeri Y (2007) Chemical reactivities and physical effects in comparison between tocopherols and tocotrienols: physiological significance and prospects as antioxidants. J Biosci Bioeng 104(6):439–445

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Marine Biotechnology Program of the Korea Institute of Marine Science and Technology (KIMST) funded by the Ministry of Oceans and Fisheries (MOF) (No. 20170488). This work was also supported by NRF (National Research Foundation of Korea) Grant funded by the Korean Government (NRF-2019R1A2C2087449).

Author information

Authors and Affiliations

Authors

Contributions

D.H.K. designed the research, carried out the experiments, and wrote the original draft. J.Y.K. conducted the formal analysis and visualized data. J.J.O. conducted the experiments. M.S.J. and H.S.A. provided methodology. C.R.J. revised the manuscript. Y.E.C. conceptualized the experiments and reviewed and edited the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Yoon-E Choi.

Ethics declarations

Ethics approval

This article did not contain research involving humans or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supporting Information

ESM 1

(PDF 162 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D.H., Kim, J.Y., Oh, JJ. et al. A strategic approach to apply bacterial substances for increasing metabolite productions of Euglena gracilis in the bioreactor. Appl Microbiol Biotechnol 105, 5395–5406 (2021). https://doi.org/10.1007/s00253-021-11412-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-021-11412-w

Keywords

Navigation