Skip to main content

Advertisement

Log in

Enzymatic characterization of a novel recombinant 1,3-α-3,6-anhydro-L-galactosidase specific for neoagarobiose hydrolysis into monosaccharides

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Two GH117 family α-neoagarobiose hydrolases (GH117A α-NABH and GH117B α-NABH) from the freshwater agar-degrading Cellvibrio sp. KY-GH-1 were expressed and purified as recombinant His-tagged proteins using an Escherichia coli expression system to compare activities. The amino acid sequence of GH117A α-NABH (364 amino acids, 40.9 kDa) showed 35% identity with that of GH117B α-NABH (392 amino acids, 44.2 kDa). GH117A α-NABH, but not GH117B α-NABH, could hydrolyze neoagarobiose (NA2) into monosaccharides 3,6-anhydro-L-galactose (L-AHG) and D-galactose. The presence of GH117A α-NABH homologues in all of the agar-degrading bacteria aligned suggests that GH117A α-NABH hydrolyzing NA2 into L-AHG and D-galactose is an essential component of the agar-degrading enzyme machinery. For GH117A α-NABH-catalyzed hydrolysis, NA2 was the sole substrate among various neoagaro-oligosaccharides (NA2~NA18). GH117A α-NABH appeared to exist as a dimer, and optimal enzymatic temperature and pH were 35 °C and 7.5, respectively. GH117A α-NABH was stable up to 35 °C and at pH 7.5 and unstable beyond 35 °C and outside pH 7.0~7.5. The kinetic parameters Km, Vmax, kcat, and kcat/Km for NA2 were 16.0 mM, 20.8 U/mg, 14.2 s-1, and 8.9 × 102 s-1 M-1, respectively. Combined addition of 5 mM MnSO4 and 10 mM tris(2-carboxyethyl)phosphine enhanced the enzyme activity by 2.4-fold. The enzyme-mediated hydrolysis of 5.0% NA2 into monosaccharide and purification of L-AHG from hydrolysis products by Sephadex G-10 column chromatography recovered ~ 192 mg L-AHG from 400 mg NA2 (~ 92% of the theoretical maximum yield). These results indicate that the recombinant GH117A α-NABH is NA2-specific and useful to produce L-AHG from NA2.

Key points

Recombinant GH117A α-NABH (364 aa, 40.9 kDa) purified from E. coli forms a dimer.

The enzyme hydrolyzes only NA2 among various neoagaro-oligosaccharides (NA2~NA18).

The enzyme completely hydrolyzes up to 5% NA2 into monomers under optimal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

Download references

Funding

This work was supported by a grant from Kyungpook National University, Daegu 41566, Republic of Korea, 2020.

Author information

Authors and Affiliations

Authors

Contributions

YHK conceived and designed the research. WYJ and MJK conducted the experiments. WYJ and KYK contributed analytical tools. WYJ and KYK analyzed the data. YHK wrote the manuscript. All authors read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Young Ho Kim.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 269 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, W.Y., Kwon, M.J., Kim, K.Y. et al. Enzymatic characterization of a novel recombinant 1,3-α-3,6-anhydro-L-galactosidase specific for neoagarobiose hydrolysis into monosaccharides. Appl Microbiol Biotechnol 105, 4621–4634 (2021). https://doi.org/10.1007/s00253-021-11341-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-021-11341-8

Keywords

Navigation