Skip to main content

Advertisement

Log in

Regulatory effects of transition metals supplementation/deficiency on the gut microbiota

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Transition metal ions are essential micronutrients for all living organisms and exert a wide range of effects on human health. The uptake of transition metal ions occurs primarily in the gastrointestinal tract, which is colonized by trillions of bacterial cells. In recent years, increasing studies have indicated that transition metals have regulatory effects on the gut microbiota. In view of the significant effect of the gut microbiota on human health and involvement in the pathogenesis of a wide range of diseases, in this paper, we provide a comprehensive discussion on the regulatory effects of four kinds of transition metal ions on the gut microbiota. A total of 20 animal model and human studies concerning the regulatory effects of four types of transition metal ions (i.e., iron, copper, zinc, and manganese) on gut microbiota were summarized. Both the deficiency and supplementation of these transition metal ions on the gut microbiota were considered. Furthermore, the potential mechanisms governing the regulatory effects of transition metal ions on the gut microbiota were also discussed.

Key points

• Regulatory effects of iron, copper, zinc, and manganese on gut microbiota were reviewed.

• Both deficiency and supplementation of metal ions on gut microbiota were considered.

• Mechanisms governing effects of metal ions on gut microbiota were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abrantes MC, Lopes Mde F, Kok J (2011) Impact of manganese, copper and zinc ions on the transcriptome of the nosocomial pathogen Enterococcus faecalis V583. PLoS One 6:e26519

    Article  CAS  PubMed  Google Scholar 

  • Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM (2008) Metal ions in biological catalysis: from enzyme databases to general principles. J Biol Inorg Chem 13:1205–1218

    Article  CAS  PubMed  Google Scholar 

  • Andrews NC (2000) Iron homeostasis: insights from genetics and animal models. Nat Rev Genet 1:208–217

    Article  CAS  PubMed  Google Scholar 

  • Bäckhed F, Fraser CM, Ringel Y (2012) Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. Cell Host Microbe 12:611–622

    Article  PubMed  Google Scholar 

  • Bednorz C, Oelgeschläger K, Kinnemann B, Hartmann S, Neumann K, Pieper R, Bethe A, Semmler T, Tedin K, Schierack P, Wieler LH, Guenther S (2013) The broader context of antibiotic resistance: zinc feed supplementation of piglets increases the proportion of multi-resistant Escherichia coli in vivo. Int J Med Microbiol 303:396–403

    Article  CAS  PubMed  Google Scholar 

  • Bowman AB, Kwakye GF, Herrero Hernández E, Aschner M (2011) Role of manganese in neurodegenerative diseases. J Trace Elem Med Biol 25:191–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buret AG, Motta JP, Allain T, Ferraz J, Wallace JL (2019) Pathobiont release from dysbiotic gut microbiota biofilms in intestinal inflammatory diseases: a role for iron? J Biomed Sci 26:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Chi L, Gao B, Bian X, Tu P, Ru H, Lu K (2017) Manganese-induced sex-specific gut microbiome perturbations in C57BL/6 mice. Toxicol Appl Pharmacol 331:142–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai J, Yang X, Yuan Y, Jia Y, Liu G, Lin N, Xiao H, Zhang L, Chen J (2020) Toxicity, gut microbiota and metabolome effects after copper exposure during early life in SD rats. Toxicology 433-434:152395

    Article  CAS  PubMed  Google Scholar 

  • Di Giancamillo A, Rossi R, Martino PA, Aidos L, Maghin F, Domeneghini C, Corino C (2018) Copper sulphate forms in piglet diets: microbiota, intestinal morphology and enteric nervous system glial cells. Anim Sci J 89:616–624

    Article  PubMed  Google Scholar 

  • Dostal A, Chassard C, Hilty FM, Zimmermann MB, Jaeggi T, Rossi S, Lacroix C (2012) Iron depletion and repletion with ferrous sulfate or electrolytic iron modifies the composition and metabolic activity of the gut microbiota in rats. J Nutr 142:271–277

    Article  CAS  PubMed  Google Scholar 

  • Dostal A, Fehlbaum S, Chassard C, Zimmermann MB, Lacroix C (2013) Low iron availability in continuous in vitro colonic fermentations induces strong dysbiosis of the child gut microbial consortium and a decrease in main metabolites. FEMS Microbiol Ecol 83:161–175

    Article  CAS  PubMed  Google Scholar 

  • Dostal A, Lacroix C, Pham VT, Zimmermann MB, Del’homme C, Bernalier-Donadille A, Chassard C (2014) Iron supplementation promotes gut microbiota metabolic activity but not colitis markers in human gut microbiota-associated rats. Br J Nutr 111:2135–2145

    Article  CAS  PubMed  Google Scholar 

  • Ellermann M, Arthur JC (2017) Siderophore-mediated iron acquisition and modulation of host-bacterial interactions. Free Radic Biol Med 105:68–78

    Article  CAS  PubMed  Google Scholar 

  • Ellermann M, Gharaibeh RZ, Maharshak N, Perez-Chanona E, Jobin C, Carroll IM, Arthur JC, Plevy SE, Fodor AA, Brouwer CR, Sartor RB (2020) Dietary iron variably modulates assembly of the intestinal microbiota in colitis-resistant and colitis-susceptible mice. Gut Microbes 11:32–50

    Article  CAS  PubMed  Google Scholar 

  • Ghaisas S, Maher J, Kanthasamy A (2016) Gut microbiome in health and disease: linking the microbiome-gut-brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacol Ther 158:52–62

    Article  CAS  PubMed  Google Scholar 

  • Illiano P, Brambilla R, Parolini C (2020) The mutual interplay of gut microbiota, diet and human disease. FEBS J 287:833–855

    Article  CAS  PubMed  Google Scholar 

  • Jaeggi T, Kortman GA, Moretti D (2015) Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut 64:731–742

    Article  CAS  PubMed  Google Scholar 

  • Kaur N, Chen CC, Luther J, Kao JY (2011) Intestinal dysbiosis in inflammatory bowel disease. Gut Microbes 2:211–216

    Article  PubMed  Google Scholar 

  • Lavelle A, Sokol H (2020) Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 17:223–237

    Article  PubMed  Google Scholar 

  • Lee T, Clavel T, Smirnov K, Schmidt A, Lagkouvardos I, Walker A, Lucio M, Michalke B, Schmitt-Kopplin P, Fedorak R, Haller D (2017) Oral versus intravenous iron replacement therapy distinctly alters the gut microbiota and metabolome in patients with IBD. Gut 66:863–871

    Article  CAS  PubMed  Google Scholar 

  • Lessa FC, Mu Y, Bamberg WM, Beldavs ZG, Dumyati GK, Dunn JR, Farley MM, Holzbauer SM, Meek JI, Phipps EC, Wilson LE, Winston LG, Cohen JA, Limbago BM, Fridkin SK, Gerding DN, McDonald LC (2015) Burden of Clostridium difficile infection in the United States. N Engl J Med 372:825–834

    Article  CAS  PubMed  Google Scholar 

  • Lieu PT, Heiskala M, Peterson PA, Yang Y (2001) The roles of iron in health and disease. Mol Asp Med 22:1–87

    Article  CAS  Google Scholar 

  • Mahalhal A, Williams JM, Johnson S (2018) Oral iron exacerbates colitis and influences the intestinal microbiome. PLoS One 13:e0202460

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayneris-Perxachs J, Bolick DT, Leng J, Medlock GL, Kolling GL, Papin JA, Swann JR, Guerrant RL (2016) Protein- and zinc-deficient diets modulate the murine microbiome and metabolic phenotype. Am J Clin Nutr 104:1253–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng XL, Li S, Qin CB, Zhu ZX, Hu WP, Yang LP, Lu RH, Li WJ, Nie GX (2018) Intestinal microbiota and lipid metabolism responses in the common carp (Cyprinus carpio L.) following copper exposure. Ecotoxicol Environ Saf 160:257–264

    Article  CAS  PubMed  Google Scholar 

  • Muleviciene A, D’Amico F, Turroni S, Candela M, Jankauskiene A (2018) Iron deficiency anemia-related gut microbiota dysbiosis in infants and young children: a pilot study. Acta Microbiol Immunol Hung 65:551–564

    Article  CAS  PubMed  Google Scholar 

  • Ng O (2016) Iron, microbiota and colorectal cancer. Wien Med Wochenschr 166:431–436

    Article  PubMed  Google Scholar 

  • Paganini D, Zimmermann MB (2017) The effects of iron fortification and supplementation on the gut microbiome and diarrhea in infants and children: a review. Am J Clin Nutr 106:1688S–1693S

    Article  PubMed  PubMed Central  Google Scholar 

  • Paganini D, Uyoga MA, Zimmermann MB (2016) Iron fortification of foods for infants and children in low-income countries: effects on the gut microbiome, gut inflammation, and diarrhea. Nutrients 8:494

    Article  PubMed Central  Google Scholar 

  • Parmanand BA, Kellingray L, Le Gall G, Basit AW, Fairweather-Tait S, Narbad A (2019) A decrease in iron availability to human gut microbiome reduces the growth of potentially pathogenic gut bacteria; an in vitro colonic fermentation study. J Nutr Biochem 67:20–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poduval RD, Kamath RP, Corpuz M, Norkus EP, Pitchumoni CS (2000) Clostridium difficile and vancomycin-resistant Enterococcus: the new nosocomial alliance. Am J Gastroenterol 95:3513–3515

    Article  CAS  PubMed  Google Scholar 

  • Reed S, Neuman H, Moscovich S, Glahn RP, Koren O, Tako E (2015) Chronic zinc deficiency alters chick gut microbiota composition and function. Nutrients 7:9768–9784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan Y, Wu C, Guo X, Xu Z, Xing C, Cao H, Zhang C, Hu G, Liu P (2019) High doses of copper and mercury changed cecal microbiota in female mice. Biol Trace Elem Res 189:134–144

    Article  CAS  PubMed  Google Scholar 

  • Saha P, Yeoh BS, Singh R, Chandrasekar B, Vemula PK, Haribabu B, Vijay-Kumar M, Jala Venkatakrishna R (2016) Gut microbiota conversion of dietary ellagic acid into bioactive phytoceutical urolithin A inhibits heme peroxidases. PLoS One 11:e0156811

    Article  PubMed  PubMed Central  Google Scholar 

  • Sartor RB, Wu GD (2017) Roles for intestinal bacteria, viruses, and fungi in pathogenesis of inflammatory bowel diseases and therapeutic approaches. Gastroenterology 152:327–339 e324

    Article  CAS  PubMed  Google Scholar 

  • Sekirov I, Russell SL, Antunes LC, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90:859–904

    Article  CAS  PubMed  Google Scholar 

  • Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14:e1002533

    Article  PubMed  PubMed Central  Google Scholar 

  • Shao Y, Lei Z, Yuan J, Yang Y, Guo Y, Zhang B (2014) Effect of zinc on growth performance, gut morphometry, and cecal microbial community in broilers challenged with Salmonella enterica serovar typhimurium. J Microbiol 52:1002–1011

  • Shen L (2020) Gut, oral and nasal microbiota and Parkinson’s disease. Microb Cell Factories 19:50

    Article  Google Scholar 

  • Shen L, Liu L, Ji HF (2017) Alzheimer’s disease histological and behavioral manifestations in transgenic mice correlate with specific gut microbiome state. J Alzheimers Dis 56:385–390

    Article  CAS  PubMed  Google Scholar 

  • Shen L, Liu L, Li XY, Ji HF (2019) Regulation of gut microbiota in Alzheimer’s disease mice by silibinin and silymarin and their pharmacological implications. Appl Microbiol Biotechnol 103:7141–7149

    Article  CAS  PubMed  Google Scholar 

  • Skrypnik K, Suliburska J (2018) Association between the gut microbiota and mineral metabolism. J Sci Food Agric 98:2449–2460

    Article  CAS  PubMed  Google Scholar 

  • Sommer F, Bäckhed F (2013) The gut microbiota--masters of host development and physiology. Nat Rev Microbiol 11:227–238

    Article  CAS  PubMed  Google Scholar 

  • Song M, Li X, Zhang X, Shi H, Vos MB, Wei X, Wang Y, Gao H, Rouchka EC, Yin X, Zhou Z, Prough RA, Cave MC, McClain CJ (2018) Dietary copper-fructose interactions alter gut microbial activity in male rats. Am J Physiol Gastrointest Liver Physiol 314:G119–G130

    Article  PubMed  Google Scholar 

  • Waldron KJ, Rutherford JC, Ford D, Robinson NJ (2009) Metalloproteins and metal sensing. Nature 460:823–830

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Pantopoulos K (2011) Regulation of cellular iron metabolism. Biochem J 434:365–381

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Song M, Yin X, Schuschke DA, Koo I, McClain CJ, Zhang X (2015) Effects of dietary different doses of copper and high fructose feeding on rat fecal metabolome. J Proteome Res 14:4050–4058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner T, Wagner SJ, Martínez I, Walter J, Chang JS, Clavel T, Kisling S, Schuemann K, Haller D (2011) Depletion of luminal iron alters the gut microbiota and prevents Crohn’s disease-like ileitis. Gut 60:325–333

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Song X, Chen A, Wang H, Chai L (2020) Exposure to copper altered the intestinal microbiota in Chinese brown frog (Rana chensinensis). Environ Sci Pollut Res Int 27:13855–13865

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz B, Li H (2018) Gut microbiota and iron: the crucial actors in health and disease. Pharmaceuticals (Basel) 11:98

    Article  CAS  Google Scholar 

  • Zackular JP, Skaar EP (2018) The role of zinc and nutritional immunity in Clostridium difficile infection. Gut Microbes 9:469–476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zackular JP, Moore JL, Jordan AT, Juttukonda LJ, Noto MJ, Nicholson MR, Crews JD, Semler MW, Zhang Y, Ware LB, Washington MK, Chazin WJ, Caprioli RM, Skaar EP (2016) Dietary zinc alters the microbiota and decreases resistance to Clostridium difficile infection. Nat Med 22:1330–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Shandong Provincial Natural Science Foundation (Grant No. ZR2019MH020), University Youth Innovation Team of Shandong Province (Grant No. 2019KJK017) and Talent Program of Zibo.

Author information

Authors and Affiliations

Authors

Contributions

HFJ and LS conceived and designed research. CYL and XYL collected data. CYL, XYL, HFJ and LS performed analysis. XYL, CYL, HFJ, and LS wrote paper. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Liang Shen or Hong-Fang Ji.

Ethics declarations

Conflict of interest

CYL declares that he has no conflict of interest. XYL declares that he has no conflict of interest. HFJ declares that she has no conflict of interest. LS declares that he has no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, CY., Li, XY., Shen, L. et al. Regulatory effects of transition metals supplementation/deficiency on the gut microbiota. Appl Microbiol Biotechnol 105, 1007–1015 (2021). https://doi.org/10.1007/s00253-021-11096-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-021-11096-2

Keywords

Navigation