Skip to main content

Advertisement

Log in

Perspectives for the microbial production of ethyl acetate

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Ethyl acetate is one of the short-chain esters and widely used in the food, beverage, and solvent areas. The ethyl acetate production currently proceeds through unsustainable and energy intensive processes, which are based on natural gas and crude oil. Microbial conversion of biomass-derived sugars into ethyl acetate may provide a sustainable alternative. In this review, the perspectives of bio-catalyzing ethanol and acetic acid to ethyl acetate using lipases in vitro was introduced. Besides, the crucial elements for high yield of ethyl acetate in fermentation was expounded. Also, metabolic engineering in yeasts to product ethyl acetate in vivo using alcohol acyl transferases (AAT) was discussed.

Key points

•The accumulation of acetyl-CoA is crucial for synthesizing ethyl acetate in vivo; AAT-mediated metabolic engineering could efficiently improve ethyl acetate production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akoh CC, Cooper C, Nwosu CV (1992) Lipase G-catalyzed synthesis of monoglycerides in organic solvent and analysis by HPLC. J Am Oil Chem Soc 69(3):257–260

    CAS  Google Scholar 

  • Alavijeh RS, Tabandeh F, Tavakoli O, Karkhane A, Shariati PE (2015) Production of biodiesel from microalgal oil using ethyl acetate as an acyl acceptor. J Oleo Sci 64(1):69–74

    CAS  PubMed  Google Scholar 

  • Aleksander J, Kruis AB, Astrid E, Mars C, Servé WM, Kengen A, Jan Willem Borst D, van der Oost J, Ruud A, Weusthuisb A (2018) Alcohol Acetyltransferase Eat1 is located in yeast mitochondria. Appl Environ Microbiol 84(19):e01640–e01618

    Google Scholar 

  • Armstrong DW, Yamazaki H (1984) Effect of iron and EDTA on ethyl acetate accumulation in Candida utilis. Biotechnol Lett 6(12):819–824

    CAS  Google Scholar 

  • Ayoub R, Abdul R, Sadiq B, Naeem A, Virk (2016) Enzymatic synthesis of citronellyl palmitate in organic media: process optimization and kinetic evaluation. Asian J Chem 28:298–300

    Google Scholar 

  • Barros M, Fleuri LF, Macedo GA (2010) Seed lipases: sources, applications and properties-a review. Braz J Chem Eng 27(1):15–29

    CAS  Google Scholar 

  • Bhavsar KV, Yadav GD (2018) Microwave assisted solvent-free synthesis of n-butyl propionate by immobilized lipase as catalyst. Biocatal Agric Biotechnol 14:264–269

    Google Scholar 

  • Bohnenkamp AC, Kruis AJ, Mars AE, Wijffels RH, van der Oost J, Kengen SWM, Weusthuis RA (2020) Multilevel optimisation of anaerobic ethyl acetate production in engineered Escherichia coli. Biotechnol Biofuels 13:65

    CAS  PubMed  PubMed Central  Google Scholar 

  • D’Auria JC (2006) Acyltransferases in plants: a good time to be BAHD. Curr Opin Plant Biol 9:331–340

    PubMed  Google Scholar 

  • Galaz S, Morales-Quintana L, Moya-León MA, Herrera R (2013) Structural analysis of the alcohol acyltransferase protein family from Cucumis melo shows that enzyme activity depends on an essential solvent channel. FEBS J 280:1344–1357

    CAS  PubMed  Google Scholar 

  • Galgali A, Gawas SD, Rathod VK (2018) Ultrasound assisted synthesis of citronellol laurate by using Novozym 435. Catal Today 309:133–139

    CAS  Google Scholar 

  • Gandhi NN, Patil NS, Sawant SB, Joshi JB, Mukesh D (2007) Lipase-catalyzed esterification. Catal Rev 42(4):439–480

    Google Scholar 

  • Jain VK, Divol B, Prior BA, Bauer FF (2012) Effect of alternative NAD+-regenerating pathways on the formation of primary and secondary aroma compounds in a Saccharomyces cerevisiae glycerol-defective mutant. Appl Microbiol Biotechnol 93(1):131–141

    PubMed  Google Scholar 

  • Jian D, Pengfei W, Xiaomeng F, Shengsheng X, Li DG (2019) Increase ethyl acetate production in Saccharomyces cerevisiae by genetic engineering of ethyl acetate metabolic pathway. J Ind Microbiol Biotechnol 46:801–808

    Google Scholar 

  • Knight MJ, Bull ID, Curnow P (2014) The yeast enzyme Eht1 is an octanoyl-CoA:ethanol acyltransferase that also functions as a thioesterase. Yeast 31:463–474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kruis AJ, Levisson M, Mars AE, van der Ploeg M, Garcés Daza F, Ellena V, Kengen SWM, van der Oost J, Weusthuis RA (2017) Ethyl acetate production by the elusive alcohol acetyltransferase from yeast. Metab Eng 41:92–101

    CAS  PubMed  Google Scholar 

  • Kruis AJ, Bohnenkamp AC, Patinios C, van Nuland YM, Levisson M, Mars AE, van den Berg C, Kengen SWM, Weusthuis RA (2019) Microbial production of short and medium chain esters: enzymes, pathways, and applications. Biotechnol Adv 37(7):107407

    CAS  PubMed  Google Scholar 

  • Kruis AJ, Bohnenkamp AC, Nap B, Nielsen J, Mars AE, Wijffels RH, van der Oost J, Kengen SWM, Weusthuis RA (2020) From eat to trEat: engineering the mitochondrial Eat1 enzyme for enhanced ethyl acetate production in Escherichia coli. Biotechnol Biofuels 13:76

    CAS  PubMed  PubMed Central  Google Scholar 

  • Löbs AK, Schwartz C, Thorwall S, Wheeldon I (2018) Highly multiplexed CRISPRi repression of respiratory functions enhances mitochondrial localized ethyl acetate biosynthesis in Kluyveromyces marxianus. ACS Synth Biol 7(11):2647–2655

    PubMed  Google Scholar 

  • Löser C, Urit T, Stukert A, Bley T (2013) Formation of ethyl acetate from whey by Kluyveromyces marxianus on a pilot scale. J Biotechnol 163(1):17–23

    PubMed  Google Scholar 

  • Löser C, Urit T, Bley T (2014) Perspectives for the biotechnological production of ethyl acetate by yeasts. Appl Microbiol Biotechnol 98(12):5397–5415

    PubMed  Google Scholar 

  • Löser C, Urit T, Keil P, Bley T (2015) Studies on the mechanism of synthesis of ethyl acetate in Kluyveromyces marxianus DSM 5422. Appl Microbiol Biotechnol 99(3):1131–1144

    PubMed  Google Scholar 

  • Mehta A, Grover C, Bhardwaj KK, Gupta R (2020) Application of lipase purified from Aspergillus fumigatus in the syntheses of ethyl acetate and ethyl lactate. J Oleo Sci 69(1):23–29

    CAS  PubMed  Google Scholar 

  • Minetoki T, Bogaki T, Iwamatsu A, Fujii T, Hamachi M (1993) The purification, properties and internal peptide sequences of alcohol acetyltransferase isolated from Saccharomyces cerevisiaer Kyokai no. 7. Biosci Biotechnol Biochem 57(12):2094–2098

    CAS  PubMed  Google Scholar 

  • Modi MK, Reddy JRC, Rao BVSK, Prasad RBN (2007) Lipase-mediated conversion of vegetable oils into biodiesel using ethyl acetate as acyl acceptor. Bioresour Technol 98(6):1260–1264

    CAS  PubMed  Google Scholar 

  • Morales-Quintana L, Fuentes L, Gaete-Eastman C, Herrera R, Moya-León MA (2011) Structural characterization and substrate specificity of VpAAT1 protein relatedto ester biosynthesis in mountain papaya fruit. J Mol Graph Model 29:635–642

    CAS  PubMed  Google Scholar 

  • Nancolas B, Bull ID, Stenner R, Dufour V, Curnow P (2017) Saccharomyces cerevisiae Atf1p is an alcohol acetyltransferase and a thioesterase in vitro. Yeast 34:239–251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paludo N, Alves JS, Altmann C, Ayub MAZ, Fernandez-Lafuente R, Rodrigues RC (2015) The combined use of ultrasound and molecular sieves improves the synthesis of ethyl butyrate catalyzed by immobilized Thermomyces lanuginosus lipase. Ultrason Sonochem 22:89–94

    CAS  PubMed  Google Scholar 

  • Pfeiffer T, Morley A (2014) An evolutionary perspective on the Crabtree effect. Front Mol Biosci 1:17

    PubMed  PubMed Central  Google Scholar 

  • Rauwerdink A, Kazlauskas RJ (2015) How the same core catalytic machinery catalyzes 17 different reactions: the serine-histidine-aspartate catalytic triad of α/β-hydrolase fold enzymes. ACS Catal 5:6153–6176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez GM, Tashiro Y, Atsumi S (2014) Expanding ester biosynthesis in Escherichia coli. Nat Chem Biol 10:259–265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saerens SMG, Verstrepen KJ, Van Laere SDM, Voet ARD, Van Dijck P, Delvaux FR, Thevelein JM (2006) The Saccharomyces cerevisiae EHT1 and EEB1 genes encode novel enzymes with medium-chain fatty acid ethyl ester synthesis and hydrolysis capacity. J Biol Chem 281:4446–4456

    CAS  PubMed  Google Scholar 

  • Shi YG, Wu Y, Lu XY, Ren YP, Wang Q, Zhu CM, Yu D, Wang H (2017) Lipase-catalyzed esterification of ferulic acid with lauryl alcohol in ionic liquids and antibacterial properties in vitro against three food-related bacteria. Food Chem 220:249–256

    CAS  PubMed  Google Scholar 

  • Sose MT, Bansode SR, Rathod VK (2017) Solvent free lipase catalyzed synthesis of butyl caprylate. J Chem Sci 129:1755–1760

    CAS  Google Scholar 

  • Stergiou P-Y, Foukis A, Filippou M, Koukouritaki M, Parapouli M, Theodorou LG, Hatziloukas E, Afendra A, Pandey A, Papamichael EM (2013) Advances in lipase-catalyzed esterification reactions. Biotechnol Adv 31(8):1846–1859

    CAS  PubMed  Google Scholar 

  • Verstrepen KJ, Van Laere SDM, Vanderhaegen BMP, Derdelinckx G, Dufour J-P, Pretorius IS, Winderickx J, Thevelein JM, Delvaux FR (2003) Expression levels of the yeast alcohol acetyltransferase genes ATF1, Lg-ATF1, and ATF2 control the formation of a broad range of volatile esters. Appl Environ Microbiol 69(9):5228–5237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SS, Li Z-J, Sheng S, Wu F-A, Wang J (2016) Microfluidic biocatalysis enhances the esterification of caffeic acid and methanol under continuous-flow conditions. J Chem Technol Biotechnol 91:555–562

    CAS  Google Scholar 

  • Xin F, Basu A, Yang K-L, He J (2016) Strategies for production of butanol and butyl-butyrate through lipase-catalyzed esterification. Bioresour Technol 202:214–219

    CAS  PubMed  Google Scholar 

  • Yong CP, Shaffer CEH, Bennett GN (2009) Microbial formation of esters. Appl Microbiol Biotechnol 85(1):13–25

    Google Scholar 

  • Yoshimoto H, Fujiwara D, Momma T, Tanaka K, Sone H, Nagasawa N, Tamai Y (1999) Isolation and characterization of the ATF2 gene encoding alcohol acetyltransferase II in the bottom fermenting yeast Saccharomyces pastorianus. Yeast 15(5):409–417

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key R & D Program of China (2018YFA0902200), the National Natural Science Foundation of China (21978130, 31961133017, and 21706125), the Jiangsu Province Natural Science Foundation for Youths (BK2170993 and BK20170997), and the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture.

Author information

Authors and Affiliations

Authors

Contributions

SZ conceived, designed, and drafted the paper. SZ and FG wrote the part of lipase-catalyzed esterification reactions for ethyl acetate production in vitro. WY and WD wrote the part of ethyl acetate production by yeasts in vivo. JZ and WZ wrote the part of AAT-mediated metabolic engineering for ethyl acetate production. FX and MJ wrote the part of conclusion and future perspectives. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wenming Zhang or Fengxue Xin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Guo, F., Yan, W. et al. Perspectives for the microbial production of ethyl acetate. Appl Microbiol Biotechnol 104, 7239–7245 (2020). https://doi.org/10.1007/s00253-020-10756-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10756-z

Keywords

Navigation