Skip to main content
Log in

Discovery and mechanism of intestinal bacteria in enzymatic cleavage of C–C glycosidic bonds

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

C-Glycosides, a special type of glycoside, are frequently distributed in many kinds of medicinal plants, such as puerarin and mangiferin, showing various and significant bioactivities. C-Glycosides are usually characterized by the C–C bond that forms between the anomeric carbon of sugar moieties and the carbon atom of aglycon, which is usually resistant against acidic hydrolysis and enzymatic treatments. Interestingly, C-glycosides could be cleaved by several intestinal bacteria, but whether the enzymatic cleavage of C–C glycosidic bond is reduction or hydrolysis has been controversial; furthermore, whether existence of a “C-glycosidase” directly catalyzing the cleavage is not clear. Here we review research advances about the discovery and mechanism of intestinal bacteria in enzymatic cleavage of C–C glycosidic bond with an emphasis on the identification of enzymes manipulation the deglycosylation. Finally, we give a brief conclusion about the mechanism of C-glycoside deglycosylation and perspectives for future study in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Braune A, Blaut M (2011) Deglycosylation of puerarin and other aromatic C-glucosides by a newly isolated human intestinal bacterium. Environ Microbiol 13(2):482–494

    Article  CAS  Google Scholar 

  • Braune A, Blaut M (2012) Intestinal bacterium Eubacterium cellulosolvens deglycosylates flavonoid C- and O-glucosides. Appl Environ Microbiol 78(22):8151

    Article  CAS  Google Scholar 

  • Braune A, Engst W, Blaut M (2016) Identification and functional expression of genes encoding flavonoid O- and C-glycosidases in intestinal bacteria. Environ Microbiol 18(7):2117–2129

    Article  CAS  Google Scholar 

  • Che QM, Akao T, Hattori M, Kobashi K, Namba T (1991a) Isolation of a human intestinal bacterium capable of transforming barbaloin to aloe-emodin anthrone. Planta Med 57(01):15–19

    Article  CAS  Google Scholar 

  • Che QM, Akao T, Hattori M, Kobashi K, Namba T (1991b) Metabolism of aloesin and related compounds by human intestinal bacteria: a bacterial cleavage of the C-glucosyl bond and the subsequent reduction of the acetonyl side chain. Chem Pharm Bull 39(3):704–708

    Article  CAS  Google Scholar 

  • Che QM, Akao T, Hattori M, Tsuda Y, Namba T, Kobashi K (1991c) Barbaloin stimulates growth of Eubacterium sp. strain BAR, a barbaloin-metabolizing bacterium from human feces. Chem Pharm Bull 39(3):757–760

    Article  CAS  Google Scholar 

  • Hattori M, Kanda T, Shu YZ, Akao T, Kobashi K, Namba T (1988a) Metabolism of barbaloin by intestinal bacteria. Chem Pharm Bull 36(11):4462–4466

    Article  CAS  Google Scholar 

  • Hattori M, Shu YZ, El-Sedawy AI, Namba T, Kobashi K, Tomimori T (1988b) Metabolism of homoorientin by human intestinal bacteria. J Nat Prod 51(5):874

    Article  CAS  Google Scholar 

  • Hattori M, Shu YZ, Tomimori T, Kobashi K, Namba T (1989) A bacterial cleavage of the C-glucosyl bond of mangiferin and bergenin. Phytochemistry 28(4):1289–1290

    Article  CAS  Google Scholar 

  • Huang S, Mahanta N, Begley TP, Ealick SE (2012) Pseudouridine monophosphate glycosidase: a new glycosidase mechanism. Biochemistry 51(45):9245–9255

    Article  CAS  Google Scholar 

  • Ito T, Fujimoto S, Shimosaka M, Taguchi G (2014) Production of C-glucosides of flavonoids and related compounds by Escherichia coli expressing buckwheat C-glucosyltransferase. Plant Biotechnol 31(5):519–524

    Article  CAS  Google Scholar 

  • Jin JS, Nishihata T, Kakiuchi N, Hattori M (2008) Biotransformation of C-glucosylisoflavone puerarin to estrogenic (3S)-equol in co-culture of two human intestinal bacteria. Biol Pharm Bull 31(8):1621–1625

    Article  CAS  Google Scholar 

  • Kim DH, Jung EA, Sohng IS, Han JA, Kim TH, Han MJ (1998) Intestinal bacterial metabolism of flavonoids and its relation to some biological activities. Arch Pharm Res 21(1):17–23

    Article  CAS  Google Scholar 

  • Kim M, Lee J, Han J (2015) Deglycosylation of isoflavone C-glycosides by newly isolated human intestinal bacteria. J Sci Food Agric 95(9):1925–1931

    Article  CAS  Google Scholar 

  • Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555

    Article  CAS  Google Scholar 

  • Li Y, Meselhy MR, Wang LQ, Ma CM, Nakamura N, Hattori M (2000) Biotransformation of a C-glycosylflavone, abrusin 2-O-beta-D-apioside, by human intestinal bacteria. Chem Pharm Bull 48(8):1239–1241

    Article  CAS  Google Scholar 

  • Liu QP, Sulzenbacher G, Yuan HP, Bennett EP, Pietz G, Saunders K, Spence J, Nudelman E, Levery SB, White T (2007) Bacterial glycosidases for the production of universal red blood cells. Nat Biotechnol 25(4):454–464

    Article  CAS  Google Scholar 

  • Meselhy MR, Kadota S, Hattori M, Namba T (1993) Metabolism of safflor yellow B by human intestinal bacteria. J Nat Prod 56(1):39–45

    Article  CAS  Google Scholar 

  • Nakamura K, Nishihata T, Jin JS, Ma CM, Komatsu K, Iwashima M, Hattori M (2011) The C-glucosyl bond of puerarin was cleaved hydrolytically by a human intestinal bacterium strain PUE to yield its aglycone daidzein and an intact glucose. Chem Pharm Bull 59(1):23–27

    Article  CAS  Google Scholar 

  • Nakamura K, Komatsu K, Hattori M, Iwashima M (2013) Enzymatic cleavage of the C-glucosidic bond of puerarin by three proteins, Mn2+, and oxidized form of nicotinamide adenine dinucleotide. Biol Pharm Bull 36(4):635–640

    Article  CAS  Google Scholar 

  • Nakamura K, Zhu S, Komatsu K, Hattori M, Iwashima M (2019) Expression and characterization of the human intestinal bacterial enzyme which cleaves the C-glycosidic bond in 3-Oxo-puerarin. Biol Pharm Bull 42(3):417–423

    Article  CAS  Google Scholar 

  • Park EK, Shin J, Bae EA, Lee YC, Kim DH (2006) Intestinal bacteria activate estrogenic effect of main constituents puerarin and daidzin of pueraria thunbergiana. Biol Pharm Bull 29(12):2432–2435

    Article  CAS  Google Scholar 

  • Saito K (1990) Enzyme-catalyzed cleavage of the C-glycosidic linakage to the aromatic ring-a of a 3′,4′,5′7-tetrahydroxyflavone 8-C-glycoside. Biochim Biophys Acta 1035(3):340–347

    Article  CAS  Google Scholar 

  • Sanugul K, Akao T, Li Y, Kakiuchi N, Nakamura N, Hattori M (2005a) Isolation of a human intestinal bacterium that transforms mangiferin to norathyriol and inducibility of the enzyme that cleaves a C-glucosyl bond. Biol Pharm Bull 28(9):1672–1678

    Article  CAS  Google Scholar 

  • Sanugul K, Akao T, Nakamura N, Hattori M (2005b) Two proteins, Mn2+, and low molecular cofactor are required for C-glucosyl-cleavage of mangiferin. Biol Pharm Bull 28(11):2035

    Article  CAS  Google Scholar 

  • Van’t Slot G, Humpf HU (2009) Degradation and metabolism of catechin, epigallocatechin-3-gallate (EGCG), and related compounds by the intestinal microbiota in the pig cecum model. J Agric Food Chem 57(17):8041

    Article  Google Scholar 

  • Van’T Slot G, Mattern W, Rzeppa S, Grewe D, Humpf HU (2010) Complex flavonoids in cocoa: synthesis and degradation by intestinal microbiota. J Agric Food Chem 58(15):8879–8886

    Article  Google Scholar 

  • Wei B, Wang PP, Yan ZX, Yan R (2018) Characteristics and molecular determinants of a highly selective and efficient glycyrrhizin-hydrolyzing β-glucuronidase from Staphylococcus pasteuri 3I10. Appl Microbial Biot 102(21):9193–9205

    Article  CAS  Google Scholar 

  • Xiao J, Capanoglu E, Jassbi AR, Miron A (2016) Advance on the flavonoid C-glycosides and health benefits. Crit Rev Food Sci Nutr 56:S29–S45

    Article  CAS  Google Scholar 

  • Xu J, Qian D, Jiang S, Guo J, Shang EX, Duan JA, Yang J (2014) Application of ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry to determine the metabolites of orientin produced by human intestinal bacteria. J Chromatogr B Anal Technol Biomed Life Sci 944(3):123–127

    Article  CAS  Google Scholar 

  • Yasuda T, Kano Y, Saito K, Ohsawa K (1996) Urinary and biliary metabolites of puerarin in rats. Biol Pharm Bull 19(3):413

    Article  CAS  Google Scholar 

  • Yip VLY, Varrot A, Davies GJ, Rajan SS, Yang XJ, Thompson J, Anderson WF, Withers SG (2004) An unusual mechanism of glycoside hydrolysis involving redox and elimination steps by a family 4 beta-glycosidase from Thermotoga maritima. J Am Chem Soc 126(27):8354–8355

    Article  CAS  Google Scholar 

  • Zheng S, Geng D, Liu S, Wang Q, Liu S, Wang R (2019) A newly isolated human intestinal bacterium strain capable of deglycosylating flavone C-glycosides and its functional properties. Microb Cell Fact 18

Download references

Funding

This work was financially supported by the National Key R&D Program of China (2017YFE0103100), the National Natural Science Foundation of China (No. 81773628 and No. 81741165), and the National 111 Project (No. D17012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue-Wei Xu or Hong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, B., Wang, YK., Qiu, WH. et al. Discovery and mechanism of intestinal bacteria in enzymatic cleavage of C–C glycosidic bonds. Appl Microbiol Biotechnol 104, 1883–1890 (2020). https://doi.org/10.1007/s00253-019-10333-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-10333-z

Keywords

Navigation