Skip to main content
Log in

Two new ene-reductases from photosynthetic extremophiles enlarge the panel of old yellow enzymes: CtOYE and GsOYE

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Looking for new ene-reductases with uncovered features beneficial for biotechnological applications, by mining genomes of photosynthetic extremophile organisms, we identified two new Old Yellow Enzyme homologues: CtOYE, deriving from the cyanobacterium Chroococcidiopsis thermalis, and GsOYE, from the alga Galdieria sulphuraria. Both enzymes were produced and purified with very good yields and displayed catalytic activity on a broad substrate spectrum by reducing α,β-unsaturated ketones, aldehydes, maleimides and nitroalkenes with good to excellent stereoselectivity. Both enzymes prefer NADPH but demonstrate a good acceptance of NADH as cofactor. CtOYE and GsOYE represent robust biocatalysts showing high thermostability, a wide range of pH optimum and good co-solvent tolerance. High resolution X-ray crystal structures of both enzymes have been determined, revealing conserved features of the classical OYE subfamily as well as unique properties, such as a very long loop entering the active site or an additional C-terminal alpha helix in GsOYE. Not surprisingly, the active site of CtOYE and GsOYE structures revealed high affinity toward anions caught from the mother liquor and trapped in the anion hole where electron-withdrawing groups such as carbonyl group are engaged. Ligands (para-hydroxybenzaldehyde and 2-methyl-cyclopenten-1-one) added on purpose to study complexes of GsOYE were detected in the enzyme catalytic cavity, stacking on top of the FMN cofactor, and support the key role of conserved residues and FMN cofactor in the catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Download references

Aknowledgements

We thank Dr. Antonino Pollio from ACUF Collection, Naples, Italy, for the kind gift of the G. sulphuraria strain and Prof. Nicoletta La Rocca, Department of Biology, University of Padova, Italy, for that of the C. thermalis strain.

Funding

This study was funded by Fabbrica Italiana Sintetici (FIS) S.p.A (Montecchio Maggiore, Vicenza, Italy) (grant entitled “Ricerca, produzione e sviluppo di enereduttasi per la biocatalisi industriale”) and by an Assegno di Ricerca di Ateneo from the University of Padova, CPDR159713/2015 (grant entitled “Studying enzymes from extremophiles as tools for biocatalysis”). The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laura Cendron or Elisabetta Bergantino.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 867 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robescu, M.S., Niero, M., Hall, M. et al. Two new ene-reductases from photosynthetic extremophiles enlarge the panel of old yellow enzymes: CtOYE and GsOYE. Appl Microbiol Biotechnol 104, 2051–2066 (2020). https://doi.org/10.1007/s00253-019-10287-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-10287-2

Keywords

Navigation