Skip to main content

Advertisement

Log in

Vicia: a green bridge to clean up polluted environments

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Vicia species, commonly known as vetches, include legume plants which nowadays can be found in many countries around the world. Their use to improve soil health and productivity is crucial in management schemes that make sustainable agriculture possible, but they can also play a part in the phytoremediation of polluted environments. Furthermore, they harbor a large community of rhizospheric microorganisms, such as biodegradative bacteria and plant growth–promoting rhizobacteria, which can help to increase phytoremediation efficiency. Their mutualistic association with Rhizobium sp. has also been proposed as an attractive bioremediation tool. Thus, Vicia species could make a remarkable difference in the ecological restoration of polluted soils, thanks to their dual role as cover crops and phytoremediator plants. This mini-review discusses recent advances in the use of Vicia. Challenges and opportunities connect with the application of these species will also be revised, as well as aspects that remain to be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abd-Alla MH, El-Enany A-W E, Nafady NA, Khalaf DM, Morsy FM (2014) Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil. Microbiol Res 169:49–58

    CAS  PubMed  Google Scholar 

  • Adam G, Duncan H (2003) The effect of diesel fuel on common vetch (Vicia sativa L.) plants. Environ Geochem Health 25:123–130

    CAS  PubMed  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals- concepts and applications. Chemosphere 91:869–881

    CAS  PubMed  Google Scholar 

  • Alonso-Prados JL, Hernández-Sevillano E, Llanos S, Villarroya M, García- Baudín JM (2002) Effects of sulfosulfuron soil residues on barley (Hordeum vulgare), sunflower (Helianthus annuus) and common vetch (Vicia sativa). Crop Prot 21:1061–1066

    CAS  Google Scholar 

  • Ampomah OY, Huss-Danell K (2016) Genetic diversity of rhizobia nodulating native Vicia spp. in Sweden. Syst Appl Microbiol 39:203–210

    CAS  PubMed  Google Scholar 

  • Anderson TN, Guthrie EA, Walton BT (1993) Bioremediation in the rhizosphere. Environ Sci Technol 22:3620–3636

    Google Scholar 

  • Austruy A, Wanat N, Moussard C, Vernay P, Joussein E, Ledoigt G, Hitmi A (2013) Physiological impacts of soil pollution and arsenic uptake in three plant species: Agrostis capillaris, Solanum nigrum and Vicia faba. Ecotoxicol Environ Saf 90:28–34

    CAS  PubMed  Google Scholar 

  • Baldwin KR, Creamer NG (2006) Cover crops for organic farms. Organic production:1–22

  • Béraud E, Cotelle S, Leroy P, Ferard J-F (2007) Genotoxic effects and induction of phytochelatins in the presence of cadmium in Vicia faba roots. Mutation Res 633:112–116

    PubMed  Google Scholar 

  • Bogatu C, Masu S, Lazarovici M (2007) Metals extraction from polluted soils by using of pillared zeolite and Vicia sativa.

  • Chaudri AM, Allain CMG, Barbosa-Jefferson VL, Nicholson FA, Chambers BJ, McGrath SP (2000) A study of the impacts of Zn and Cu on two rhizobial species in soils of a long-term field experiment. Plant Soil 221:167–179

    CAS  Google Scholar 

  • Etesami H (2018) Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: mechanisms and future prospects. Ecotoxicol Environ Saf 147:175–191

    CAS  Google Scholar 

  • Fatnassi IC, Chiboub M, Saadani O, Jebara M, Jebara SH (2015) Impact of dual inoculation with Rhizobium and PGPR on growth and antioxidant status of Vicia faba L. under copper stress. CR Biologies 338:241–254

    Google Scholar 

  • Fernández-Aparicio M, Sillero J, Rubiales D (2009) Resistance to broomrape species (Orobanche spp.) in common vetch (Vicia sativa L.). Crop Prot 28:7–12

    Google Scholar 

  • Francis CM, Enneking D, Abd El Moneim A (1999) When and where will vetches have an impact as grain legumes? In: Knight R (ed) Linking research and marketing opportunities for pulses in the 21st century, vol 34. Kluwer Academic Publishers, Dordrecht/Boston/London, pp 671–683

    Google Scholar 

  • Fu Q, Lau J-L, Tal ZY, Han N, Wu C (2016) Characterizations of bio-accumulations, subcellular distribution and chemical forms of cesium in Brassica juncea, and Vicia faba. J Environ Radioact 154:52–59

    CAS  PubMed  Google Scholar 

  • Gerhardt KE, Gerwing PD, Greenberg BM (2017) Opinion: taking phytoremediation from proven technology to accepted practice. Plant Sci 256:170–185

    CAS  PubMed  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Laxmipathi Gowda CL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. Biotech 5:355–377

    Google Scholar 

  • Ibañez SG, Merini LJ, Barros GG, Medina MI, Agostini E (2014) Vicia sativa-rhizospheric bacteria interactions to improve phenol remediation. Int J Environ Sci Technol 11:1679–1690

    Google Scholar 

  • Ibañez SG, Sosa Alderete LG, Medina MI, Agostini E (2012) Phytoremediation of phenol using Vicia sativa L. plants and its antioxidative response. Environ Sci Pollut Res 19:1555–1562

    Google Scholar 

  • Ibañez SG, Villasuso AL, Racagni GE, Agostini E, Medina MI (2016) Phenol modulates lipid kinase activities in Vicia sativa plants. Environ Exp Bot 122:109–114

    Google Scholar 

  • Ibañez SG, Wevar Oller AL, Paisio CE, Sosa Alderete LG, González PS, Medina MI, Agostini E (2018) The challenges of remediating metals using phytotechnologies. In: Donatti E (ed) Heavy metals in the environment: microorganisms and bioremediation. CRC Press, Taylor & Francis, pp 173–195

    Google Scholar 

  • Jaaska V (1997) Isoenzyme diversity and phylogenetic affinities in Vicia subgenus (Fabaceae). Genet Resour Crop Evol 44:557–574

    Google Scholar 

  • Jouzi Z, Azadi H, Taheri F, Zarafshani K, Gebrehiwot K, Van Passel S, Philippe L (2017) Organic farming and small-scale farmers: main opportunities and challenges. Ecol Economics 132:144–154

    Google Scholar 

  • Kumar D, Kumar Tripathi D, Liuc S, Kumar Singhd V, Sharma S, Dubeyf NK, Prasadg SM, Kumar Chauhan D (2017) Pongamia pinnata (L.) Pierre tree seedlings offer a model species for arsenic phytoremediation. Plant Gene 11:238–246

    CAS  Google Scholar 

  • Lardone AV, Justo C, Barraco MR, Scianca CM, Miranda WR (2013) Especies de cultivos de cobertura como antecesores de maíz tardío y soja. Memoria técnica, Estación Experimental Agropecuaria General Villegas

    Google Scholar 

  • Lastiri Hernández MA, Alvarez-Bernal D, Cruz Cárdenas G, Ochoa Estrada S (2018) Improvement of saline soils with Vicia sativa L. from a semiarid region. Soil and Plant Nutrition 77:501–509

    Google Scholar 

  • Maestri E, Marmiroli N (2011) Transgenic plants for phytoremediation. Int J Phytoremediation 13:264–279

    PubMed  Google Scholar 

  • Markuszewska I, Kubacka M (2017) Does organic farming (OF) work in favour of protecting the natural environment? A case study from Poland. Land Use Policy 67:498–507

    Google Scholar 

  • Marmiroli N, Marmiroli M, Maestri E (2006) Phytoremediation and phytotechnologies: a review for the present and the future. In Twardowska I, Allen HE, Haggblom MH, (eds) soil and water pollution monitoring, protection and remediation Springer, Dordretch, pp. 403-416

  • Martí MC, Camejo D, Fernández-García N, Rellán Álvarez R, Marques S, Sevilla F, Jiménez A (2009) Effect of oil refinery sludges on the growth and antioxidant system of alfalfa plants. J Hazard Mater 171:879–885

    PubMed  Google Scholar 

  • Masu S, Lixandru B, Bogatu C (2007) Zinc extraction from polluted soils by using zeolite and Vicia sativa plant. http://www.lcm2007.ethz.ch/presentation/Wed_2.05-Masu.pdf. Accesed 26 November 2018

  • Muccifora S, Bellani LM (2013) Effects of copper on germination and reserve mobilization in Vicia sativa L. seeds. Environ Pollut 179:68–74

    CAS  PubMed  Google Scholar 

  • Pajuelo E, Rodríguez Llorente ID, Dary M, Palomares AJ (2008) Toxic effects of arsenic on Sinorhizobium-Medicago sativa symbiotic interaction. Environ Pollut 154:203–211

    CAS  PubMed  Google Scholar 

  • Paudyal SP, Aryal RR, Chauhan SVS, Maheshwari DK (2007) Effect of heavy metals on growth of rhizobium strains and symbiotic efficiency of two species of tropical legumes. Sci World 5:27–32

    Google Scholar 

  • Rabhi M, Atia A, Abdelly C, Smaoui A (2015) New parameters for a better evaluation of vegetative bioremediation, leaching, and phytodesalination. Journal of Theoretical Biol 383:7–11

    CAS  Google Scholar 

  • Radwan SS, Dashti N, El-Nemr IM (2005) Enhancing the growth of Vicia faba plants by microbial inoculation to improve their phytoremediation potential for oily desert areas. Int J Phytoremediation 7:19–32

    CAS  PubMed  Google Scholar 

  • Renzi JP (2009) Efecto de la estructura de cultivo y grado de madurez a cosecha sobre el rendimiento y la calidad de semillas de Vicia sativa L. y Vicia. villosa Roth., bajo riego. Tesis de Magister en Ciencias Agrarias. Universidad Nacional del Sur

  • Renzi JP, Chantre GR, Cantamutto MA (2014) Development of a thermal-time model for combinational dormancy release of hairy vetch (Vicia villosa ssp. villosa). Crop and Pasture Science 65:470–478

    Google Scholar 

  • Renzi JP, Chantre GR, Cantamutto MA (2016) Self-regeneration of hairy vetch (Vicia villosa Roth) as affected by seedling density and soil tillage method in a semi-arid agroecosystem. John Wiley & Sons Ltd. Grass and Forage Sci 72:524–533

  • Rezania S, Taibb SM, Md Din MF, Dahalanc FA, Kamyaba H (2016) Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. J Hazard Mater 318:587–599

    CAS  PubMed  Google Scholar 

  • Rimski-Korsakov H, Alvarez CR, Lavado RS (2015) Cover crops in the agricultural systems of the Argentine Pampas. J Soil Water Conservation 70:112–119

    Google Scholar 

  • Rui H, Chena C, Zhanga X, Shena Z, Zhang F (2016) Cd-induced oxidative stress and lignification in the roots of two Vicia sativa L. varieties with different Cd tolerances. J Hazard Mater 301:304–313

    CAS  PubMed  Google Scholar 

  • Sadee BA, Foulkes ME, Hill SJ (2016) A study of arsenic speciation in soil, irrigation water and plant tissue: a case study of the broad bean plant, Vicia faba. Food Chem 210:362–370

    CAS  PubMed  Google Scholar 

  • Sarwar N, Imran M, Rashid Shaheen M, Ishaque W, Asif Kamran M, Matloob A, Rehim A, Hussain S (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721

    CAS  PubMed  Google Scholar 

  • Seufert V, Ramankutty N, Mayerhofer T (2017) What is this thing called organic?- how organic farming is codified in regulations. Food Policy 68:10–20

    Google Scholar 

  • Shahid M, Pinelli E, Pourrut B, Dumat C (2014) Effect of organic ligands on lead-induced oxidative damage and enhanced antioxidant defense in the leaves of Vicia faba plants. J Geochemical Exploration 144:282–289

    CAS  Google Scholar 

  • Sierra M, Millán R, Esteban E, Cardona A, Schmid T (2008) Evaluation of mercury uptake and distribution in Vicia sativa L. applying two different study scales: greenhouse conditions and lysimeter experiments. J Geochem Explor 96:203–209

    CAS  Google Scholar 

  • Singh H, Verma A, Kumar M, Sharma R, Gupta R, Kaur M, Negi M, Sharma SK (2017) Phytoremediation: a green technology to clean up the sites with low and moderate level of heavy metals. Austin Biochem 2:1–8

    CAS  Google Scholar 

  • Srivastava S, Mishra S, Dwivedi S, Baghel VS, Verma S, Tandon PK, Rai UN, Tripathi RD (2005) Nickel phytoremediation potential of broad bean, Vicia faba L., and ts biochemical responses. Bull Environ Contam Toxicol 74:715–724

    CAS  PubMed  Google Scholar 

  • Sta C, Ledoigt G, Ferjani E, Goupil P (2012) Exposure of Vicia faba to sulcotrione pesticide induced genotoxicity. Pesticide Biochem Physiol 103:9–14

    CAS  Google Scholar 

  • Talano MA, Cejas RB, González PS, Agostini E (2013) Arsenic effect on the model crop symbiosis Bradyrhizobium-soybean. Plant Physiol Biochem 63:8–14

    CAS  PubMed  Google Scholar 

  • Tan M, Temel S (2005) Effect of mepiquat chloride, a growth retardant, on seed yield and yield components in common vetch (Vicia sativa). Indian J Agr Sci 75:160–161

    CAS  Google Scholar 

  • Trenton R, Carrie O, Kelsey H, Hannah W, Tyler D (2018) Understanding cover crops. Agriculture and Natural Resources FS2156

  • Wiesmeier M, Lungu M, Hübner R, Cerbari V (2015) Remediation of degraded arable steppe soils in Moldova using vetch as green manure. Solid Earth 6:609–620

    Google Scholar 

  • Zhao F-J, Zhu Y-G, Meharg AA (2013) Methylated arsenic species in rice: geographical variation, origin, and uptake mechanisms. Environ Sci Technol 4:3957–3966

    Google Scholar 

  • Zu Y, Qin L, Zhan F, Wu J, Li Y, Chen J, Wang J, Hu W (2018) Effects of intercropping of Sonchus asper and Vicia faba on plant cadmium accumulation and root responses. Pedosphere In Press. https://doi.org/10.1016/S1002-0160(17)60484-3

Download references

Acknowledgments

We thank Florencia Sgarlatta for the revision of English language in the manuscript.

Funding

This work was supported by the grants from Secretaría de Ciencia y Técnica- Universidad Nacional de Río Cuarto (SECyT-UNRC) (PPI 2016–2018), Fondo Nacional para la Investigación Científica y Tecnológica (FONCYT) (PICT 447/15), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (PIP). SGI and EA are members of the Research Career from CONICET (Argentina).

Author information

Authors and Affiliations

Authors

Contributions

EA and SGI had the idea for the article and performed the literature search and data analysis. SGI wrote the manuscript. MIM and EA critically revised and correct the manuscript.

Corresponding author

Correspondence to Elizabeth Agostini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibañez, S., Medina, M.I. & Agostini, E. Vicia: a green bridge to clean up polluted environments. Appl Microbiol Biotechnol 104, 13–21 (2020). https://doi.org/10.1007/s00253-019-10222-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-10222-5

Keywords

Navigation