Skip to main content

Advertisement

Log in

Preventative delivery of IL-35 by Lactococcus lactis ameliorates DSS-induced colitis in mice

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Ulcerative colitis (UC) is one of the two major forms of inflammatory bowel disease (IBD) characterized by superficial mucosal inflammation, rectal bleeding, diarrhea, and abdominal pain. Anti-inflammatory and immunosuppressive drugs have been used in the therapy of human UC. Interleukin (IL)-35, which functions as an anti-inflammatory cytokine, has been shown to play a potential therapeutic role in a UC-like mouse colitis induced by dextran sodium sulfate (DSS). However, the contribution of IL-35 via oral administration to colitis prevention has not been determined. In order to explore its preventative potentiality, a dairy Lactococcus lactis NZ9000 strain was engineered to express murine IL-35 (NZ9000/IL-35), and this recombinant bacteria was applied to prevent and limit the development of DSS-induced mouse colitis. We found that oral administration of NZ9000/IL-35 induced the accumulation of IL-35 in the gut lumen of normal mice. When administrated preventatively, NZ9000/IL-35-gavaged mice exhibited decreased weight loss, DAI score, colon shortening as well as colitis-associated histopathological changes in colon, indicating that the oral administration of NZ9000/35 contributed to the suppression of DSS-induced colitis progression. Moreover, much less Th17 cells and higher level of Treg cells in lamina propria, as well as increased colon and serum levels of IL-10 with a concomitant reduced pro-inflammatory cytokines, IL-6, IL-17A, IFN-γ, and TNF-α were apparently regulated by NZ9000/IL-35 in colitis mice. Together, we put forward direct evidence pinpointing the effectiveness of NZ9000/IL-35 in preventing UC-like mouse colitis, implying a potential candidate of this recombinant Lactococcus lactis that prevent the progression of IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Acknowledgments

The authors thank Jian Hu for help with histopathological analysis.

Funding

This work was supported by grants from the Program of Science and Technology Development Plan of Jilin Province of China (Grant number, 20170101028JC).

Author information

Authors and Affiliations

Authors

Contributions

Fengqi Hao conceived and designed study. Jianyong Wang and Miaomiao Tian performed research; Jianyong Wang and Wei Li analyzed data and wrote the manuscript; Fengqi Hao and Miaomiao Tian contributed to manuscript revision.

Corresponding author

Correspondence to Fengqi Hao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Tian, M., Li, W. et al. Preventative delivery of IL-35 by Lactococcus lactis ameliorates DSS-induced colitis in mice. Appl Microbiol Biotechnol 103, 7931–7941 (2019). https://doi.org/10.1007/s00253-019-10094-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-10094-9

Keywords

Navigation