Skip to main content
Log in

Identification of novel potential acetate-oxidizing bacteria in thermophilic methanogenic chemostats by DNA stable isotope probing

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Syntrophic oxidization of acetate and propionate are both critical steps of methanogenesis during thermophilic anaerobic digestion. However, knowledge on syntrophic acetate-oxidizing bacteria (SAOB) and syntrophic propionate-oxidizing bacteria (SPOB) is limited because of the difficulty in pure culture isolation due to symbiotic relationship. In this study, two thermophilic acetate-fed anaerobic chemostats, ATL (dilution rate of 0.025 day−1) and ATH (0.05 day−1) and one thermophilic propionate-fed anaerobic chemostat PTL (0.025 day−1) were constructed, AOB and POB in these chemostats were studied via microbial community analysis and DNA stable-isotope probing (SIP). The results showed that, in addition to Tepidanaerobacter, a known SAOB, species of Thauera, Thermodesulfovibrio, Anaerobaculum, Ruminiclostridium, Comamonas, and uncultured bacteria belonging to Lentimicrobiaceae, o_MBA03, Thermoanaerobacteraceae, Anaerolineaceae, Clostridiales, and Ruminococcaceae were determined to be potential AOB in chemostats. Pelotomaculum was the key SPOB detected in the propionate-fed chemostat. Based on the intense fluorescence of coenzyme F420, majority of Methanosarcina cells in acetate-fed chemostats were involved in hydrogenotrophic methanogenesis, suggesting the existence of highly active SAOB among the detected AOB. In the propionate-fed chemostat, most of the species detected as AOB were similar to those detected in the acetate-fed chemostats, suggesting the contribution of the syntrophic acetate oxidization pathway for methane generation. These results revealed the existence of previously unknown AOB with high diversity in thermophilic chemostats and suggested that methanogenesis from acetate via the syntrophic oxidization pathway is relevant for thermophilic anaerobic digestion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen KD, White RH (2018) Chapter Seventeen - Identification of the radical SAM enzymes involved in the biosynthesis of methanopterin and coenzyme F420 in methanogens. In: Bandarian V (ed) Methods in enzymology, vol 606. Academic Press, Cambridge, pp 461–483

    Google Scholar 

  • APHA, AWWA, WEF (2012) Standard Methods for the examination of water and wastewater, 22nd edn. American Public Health Association, Washington DC

    Google Scholar 

  • Balk M, Weijma J, Stams AJM (2002) Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor. Int J Syst Evol Microbiol 52(4):1361–1368

    CAS  PubMed  Google Scholar 

  • Boone DR, Bryant MP (1980) Propionate-Degrading Bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from Methanogenic Ecosystems. Appl Environ Microbiol 40(3):626–632

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Liu X, Dong X (2005) Syntrophobacter sulfatireducens sp. nov., a novel syntrophic, propionate-oxidizing bacterium isolated from UASB reactors. Int J Syst Evol Microbiol 55(3):1319–1324

    CAS  PubMed  Google Scholar 

  • Cheng L, He Q, Ding C, L-r D, Li Q, Zhang H (2013) Novel bacterial groups dominate in a thermophilic methanogenic hexadecane-degrading consortium. FEMS Microbiol Ecol 85(3):568–577

    CAS  PubMed  Google Scholar 

  • Cheng L, Shi S, Li Q, Chen J, Zhang H, Lu Y (2014) Progressive degradation of crude oil n-alkanes coupled to methane production under mesophilic and thermophilic conditions. PLoS One 9(11):e113253

    PubMed  PubMed Central  Google Scholar 

  • de Bok FAM, Harmsen HJM, Plugge CM, de Vries MC, Akkermans ADL, de Vos WM, Stams AJM (2005) The first true obligately syntrophic propionate-oxidizing bacterium, Pelotomaculum schinkii sp. nov., co-cultured with Methanospirillum hungatei, and emended description of the genus Pelotomaculum. Int J Syst Evol Microbiol 55(4):1697–1703

    PubMed  Google Scholar 

  • Eirich LD, Vogels GD, Wolfe RS (1978) Proposed structure for coenzyme F420 from methanobacterium. Biochemistry 17(22):4583–4593

    CAS  PubMed  Google Scholar 

  • Fardeau M-L, Ollivier B, Patel BKC, Dwivedi P, Ragot M, Garcia J-L (1995) Isolation and characterization of a thermophilic sulfate-reducing bacterium, Desulfotomaculum thermosapovorans sp nov. Int J Syst Evol Microbiol 45(2):218–221

    CAS  Google Scholar 

  • Felchner-Zwirello M, Winter J, Gallert C (2013) Interspecies distances between propionic acid degraders and methanogens in syntrophic consortia for optimal hydrogen transfer. Appl Microbiol Biotechnol 97(20):9193–9205

    CAS  PubMed  Google Scholar 

  • Griffiths RI, Whiteley AS, O'Donnell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66(12):5488–5491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gumaelius L, Magnusson G, Pettersson B, Dalhammar G (2001) Comamonas denitrificans sp. nov., an efficient denitrifying bacterium isolated from activated sludge. Int J Syst Evol Microbiol 51(3):999–1006

    CAS  PubMed  Google Scholar 

  • Hagemeier CH, Shima S, Thauer RK, Bourenkov G, Bartunik HD, Ermler U (2003) Coenzyme F420-dependent methylenetetrahydromethanopterin dehydrogenase (Mtd) from Methanopyrus kandleri: a methanogenic enzyme with an unusual quarternary structure. J Mol Biol 332(5):1047–1057

    CAS  PubMed  Google Scholar 

  • Harmsen HJM, Van Kuijk BLM, Plugge CM, Akkermans ADL, de Vos WM, Stams AJM (1998) Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium. Int J Syst Evol Microbiol 48(4):1383–1387

    CAS  Google Scholar 

  • Hatamoto M, Imachi H, Yashiro Y, Ohashi A, Harada H (2007) Diversity of anaerobic microorganisms involved in long-chain fatty acid degradation in methanogenic sludges as revealed by RNA-based stable isotope probing. Appl Environ Microbiol 73(13):4119–4127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hattori S, Kamagata Y, Hanada S, Shoun H (2000) Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int J Syst Evol Microbiol 50(4):1601–1609

    CAS  PubMed  Google Scholar 

  • Heeg K, Pohl M, Sontag M, Mumme J, Klocke M, Nettmann E (2014) Microbial communities involved in biogas production from wheat straw as the sole substrate within a two-phase solid-state anaerobic digestion. Syst Appl Microbiol 37(8):590–600

    CAS  PubMed  Google Scholar 

  • Ho D, Jensen P, Gutierrez-Zamora M-L, Beckmann S, Manefield M, Batstone D (2016) High-rate, high temperature acetotrophic methanogenesis governed by a three population consortium in anaerobic bioreactors. PLoS One 11(8):e0159760

    PubMed  PubMed Central  Google Scholar 

  • Horino H, Fujita T, Tonouchi A (2014) Description of Anaerobacterium chartisolvens gen. nov., sp. nov., an obligately anaerobic bacterium from Clostridium rRNA cluster III isolated from soil of a Japanese rice field, and reclassification of Bacteroides cellulosolvens Murray et al. 1984 as Pseudobacteroides cellulosolvens gen. nov., comb. nov. Int J Syst Evol Microbiol 64(4):1296–1303

    CAS  PubMed  Google Scholar 

  • Imachi H, Sekiguchi Y, Kamagata Y, Hanada S, Ohashi A, Harada H (2002) Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int J Syst Evol Microbiol 52(5):1729–1735

    CAS  PubMed  Google Scholar 

  • Imachi H, Sakai S, Ohashi A, Harada H, Hanada S, Kamagata Y, Sekiguchi Y (2007) Pelotomaculum propionicicum sp. nov., an anaerobic, mesophilic, obligately syntrophic, propionate-oxidizing bacterium. Int J Syst Evol Microbiol 57(7):1487–1492

    PubMed  Google Scholar 

  • Kengen SWM, Breidenbach CG, Felske A, Stams AJM, Schraa G, de Vos WM (1999) Reductive dechlorination of tetrachloroethene to cis-1,2-dichloroethene by a thermophilic anaerobic enrichment culture. Appl Environ Microbiol 65(6):2312–2316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kosaka T, Uchiyama T, Ishii S-I, Enoki M, Imachi H, Kamagata Y, Ohashi A, Harada H, Ikenaga H, Watanabe K (2006) Reconstruction and regulation of the central catabolic pathway in the thermophilic propionate-oxidizing syntroph Pelotomaculum thermopropionicum. J Bacteriol 188(1):202–210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kröber M, Bekel T, Diaz NN, Goesmann A, Jaenicke S, Krause L, Miller D, Runte KJ, Viehöver P, Pühler A, Schlüter A (2009) Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing. J Biotechnol 142(1):38–49

    PubMed  Google Scholar 

  • Lackner N, Hintersonnleitner A, Wagner AO, Illmer P (2018) Hydrogenotrophic methanogenesis and autotrophic growth of Methanosarcina thermophila. Archaea 2018:4712608

    PubMed  PubMed Central  Google Scholar 

  • Lee MJ, Zinder SH (1988) Isolation and characterization of a thermophilic bacterium which oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H2-CO2. Appl Environ Microbiol 54(1):124–129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin R, Cheng J, Ding L, Murphy JD (2018) Improved efficiency of anaerobic digestion through direct interspecies electron transfer at mesophilic and thermophilic temperature ranges. Chem Eng J 350:681–691

    CAS  Google Scholar 

  • Liu Y, Balkwill DL, Aldrich HC, Drake GR, Boone DR (1999) Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. Int J Syst Evol Microbiol 49(2):545–556

    CAS  Google Scholar 

  • Liu P, Klose M, Conrad R (2018) Temperature effects on structure and function of the methanogenic microbial communities in two paddy soils and one desert soil. Soil Biol Biochem 124:236–244

    Google Scholar 

  • Lueders T, Manefield M, Friedrich MW (2003) Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients. Environ Microbiol 6(1):73–78

    Google Scholar 

  • Mathis BJ, Marshall CW, Milliken CE, Makkar RS, Creager SE, May HD (2008) Electricity generation by thermophilic microorganisms from marine sediment. Appl Microbiol Biotechnol 78(1):147–155

    CAS  PubMed  Google Scholar 

  • Maune MW, Tanner RS (2012) Description of Anaerobaculum hydrogeniformans sp. nov., an anaerobe that produces hydrogen from glucose, and emended description of the genus Anaerobaculum. Int J Syst Evol Microbiol 62(4):832–838

    CAS  PubMed  Google Scholar 

  • Nilsen RK, Torsvik T, Lien T (1996) Desulfotomaculum thermocisternum sp. nov., a sulfate reducer isolated from a hot North Sea oil reservoir. Int J Syst Evol Microbiol 46(2):397–402

    Google Scholar 

  • Plugge CM, Balk M, Stams AJM (2002) Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum subsp. nov., a thermophilic, syntrophic, propionate-oxidizing, spore-forming bacterium. Int J Syst Evol Microbiol 52(2):391–399

    CAS  PubMed  Google Scholar 

  • Qiu Y-L, Sekiguchi Y, Hanada S, Imachi H, Tseng I-C, Cheng S-S, Ohashi A, Harada H, Kamagata Y (2006) Pelotomaculum terephthalicum sp. nov. and Pelotomaculum isophthalicum sp. nov.: two anaerobic bacteria that degrade phthalate isomers in syntrophic association with hydrogenotrophic methanogens. Arch Microbiol 185(3):172–182

    CAS  PubMed  Google Scholar 

  • Rivière D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach J, Li T, Camacho P, Sghir A (2009) Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J 3(6):700–714

    PubMed  Google Scholar 

  • Sasaki K, Morita M, S-i H, Ohmura N, Igarashi Y (2011a) Decreasing ammonia inhibition in thermophilic methanogenic bioreactors using carbon fiber textiles. Appl Microbiol Biotechnol 90(4):1555–1561

    CAS  PubMed  Google Scholar 

  • Sasaki K, Morita M, Sasaki D, Nagaoka J, Matsumoto N, Ohmura N, Shinozaki H (2011b) Syntrophic degradation of proteinaceous materials by the thermophilic strains Coprothermobacter proteolyticus and Methanothermobacter thermautotrophicus. J Biosci Bioeng 112(5):469–472

    CAS  PubMed  Google Scholar 

  • Sasaki D, Morita M, Sasaki K, Watanabe A, Ohmura N (2012) Acceleration of cellulose degradation and shift of product via methanogenic co-culture of a cellulolytic bacterium with a hydrogenotrophic methanogen. J Biosci Bioeng 114(4):435–439

    CAS  PubMed  Google Scholar 

  • Schnürer A, Schink B, Svensson BH (1996) Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium. Int J Syst Evol Microbiol 46(4):1145–1152

    Google Scholar 

  • Sekiguchi Y, Muramatsu M, Imachi H, Narihiro T, Ohashi A, Harada H, Hanada S, Kamagata Y (2008) Thermodesulfovibrio aggregans sp. nov. and Thermodesulfovibrio thiophilus sp. nov., anaerobic, thermophilic, sulfate-reducing bacteria isolated from thermophilic methanogenic sludge, and emended description of the genus Thermodesulfovibrio. Int J Syst Evol Microbiol 58(11):2541–2548

    CAS  PubMed  Google Scholar 

  • Shigematsu T, Tang Y, Kawaguchi H, Ninomiya K, Kijima J, Kobayashi T, Morimura S, Kida K (2003) Effect of dilution rate on structure of a mesophilic acetate-degrading methanogenic community during continuous cultivation. J Biosci Bioeng 96(6):547–558

    CAS  PubMed  Google Scholar 

  • Shigematsu T, Era S, Mizuno Y, Ninomiya K, Kamegawa Y, Morimura S, Kida K (2006a) Microbial community of a mesophilic propionate-degrading methanogenic consortium in chemostat cultivation analyzed based on 16S rRNA and acetate kinase genes. Appl Microbiol Biotechnol 72(2):401–415

    CAS  PubMed  Google Scholar 

  • Shigematsu T, Tang Y, Mizuno Y, Kawaguchi H, Morimura S, Kida K (2006b) Microbial diversity of mesophilic methanogenic consortium that can degrade long-chain fatty acids in chemostat cultivation. J Biosci Bioeng 102(6):535–544

    CAS  PubMed  Google Scholar 

  • Sorokin DY, Chernyh NA (2016) ‘Candidatus Desulfonatronobulbus propionicus’: a first haloalkaliphilic member of the order Syntrophobacterales from soda lakes. Extremophiles 20(6):895–901

    CAS  PubMed  Google Scholar 

  • Sun W, Krumins V, Dong Y, Gao P, Ma C, Hu M, Li B, Xia B, He Z, Xiong S (2018) A combination of stable isotope probing, illumina sequencing, and co-occurrence network to investigate thermophilic acetate- and lactate-utilizing bacteria. Microb Ecol 75(1):113–122

    CAS  PubMed  Google Scholar 

  • Takai K, Horikoshi K (2000) Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol 66(11):5066–5072

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Y-Q, Matsui T, Morimura S, Wu X-L, Kida K (2008) Effect of temperature on microbial community of a glucose-degrading methanogenic consortium under hyperthermophilic chemostat cultivation. J Biosci Bioeng 106(2):180–187

    CAS  PubMed  Google Scholar 

  • Tatara M, Makiuchi T, Ueno Y, Goto M, Sode K (2008) Methanogenesis from acetate and propionate by thermophilic down-flow anaerobic packed-bed reactor. Bioresour Technol 99(11):4786–4795

    CAS  PubMed  Google Scholar 

  • Ueno Y, Tatara M (2008) Microbial population in a thermophilic packed-bed reactor for methanogenesis from volatile fatty acids. Enzym Microb Technol 43(3):302–308

    CAS  Google Scholar 

  • Wagner AO, Reitschuler C, Illmer P (2014) Effect of different acetate:propionate ratios on the methanogenic community during thermophilic anaerobic digestion in batch experiments. Biochem Eng J 90:154–161

    CAS  Google Scholar 

  • Wallrabenstein C, Hauschild E, Schink B (1995) Syntrophobacter pfennigii sp. nov., new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate. Arch Microbiol 164(5):346–352

    CAS  Google Scholar 

  • Wang H-Z, Gou M, Yi Y, Xia Z-Y, Tang Y-Q (2018) Identification of novel potential acetate-oxidizing bacteria in an acetate-fed methanogenic chemostat based on DNA stable isotope probing. J Gen Appl Microbiol 64(5):221–231

    CAS  PubMed  Google Scholar 

  • Westerholm M, Roos S, Schnürer A (2010) Syntrophaceticus schinkii gen. nov., sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from a mesophilic anaerobic filter. FEMS Microbiol Lett 309(1):100–104

    CAS  PubMed  Google Scholar 

  • Westerholm M, Roos S, Schnürer A (2011) Tepidanaerobacter acetatoxydans sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from two ammonium-enriched mesophilic methanogenic processes. Syst Appl Microbiol 34(4):260–266

    CAS  PubMed  Google Scholar 

  • Yang G-Q, Zhang J, Kwon S-W, Zhou S-G, Han L-C, Chen M, Ma C, Zhuang L (2013) Thauera humireducens sp. nov., a humus-reducing bacterium isolated from a microbial fuel cell. Int J Syst Evol Microbiol 63(3):873–878

    CAS  PubMed  Google Scholar 

  • Zhao J, Westerholm M, Qiao W, Yin D, Bi S, Jiang M, Dong R (2018) Impact of temperature and substrate concentration on degradation rates of acetate, propionate and hydrogen and their links to microbial community structure. Bioresour Technol 256:44–52

    CAS  PubMed  Google Scholar 

  • Zhu X, Kougias PG, Treu L, Campanaro S, Angelidaki I (2017) Microbial community changes in methanogenic granules during the transition from mesophilic to thermophilic conditions. Appl Microbiol Biotechnol 101(3):1313–1322

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Ministry of Science and Technology of China (No. 2016YFE0127700) and the National Natural Science Foundation of China (No. 51678378).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Qin Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1267 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, D., Wang, HZ., Gou, M. et al. Identification of novel potential acetate-oxidizing bacteria in thermophilic methanogenic chemostats by DNA stable isotope probing. Appl Microbiol Biotechnol 103, 8631–8645 (2019). https://doi.org/10.1007/s00253-019-10078-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-10078-9

Keywords

Navigation