Skip to main content

Advertisement

Log in

Role of cyanobacteria in agricultural and industrial sectors: an outlook on economically important byproducts

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cyanobacteria are potential organisms, which are used as food, feed and fuel. The unique characters of cyanobacteria include short generation times, their ubiquitous presence and efficient nitrogen fixing potential. Cyanobacteria are unique organisms performing photosynthesis, bioremediation of wastewater, high biomass and biofuel productions etc. They are also used in the treatment of industrial and domestic wastewaters for the utilization or removal of ammonia, phosphates and other heavy metals (Cr, Pb, Co, Cu, Zn). Biomasses of cyanobacteria are used as biofertilizers for the improvement of nutrient or mineral status and water-holding capacity of the soil. The secondary metabolites of cyanobacteria are used in pharmaceuticals, nutraceutical and chemical industries. In the industrial sector, value-added products from cyanobacteria such as pigments, enzymes and exopolysaccharides are being produced in large scales for biomedical and health applications. Age-old applications of cyanobacteria in agroecosystems as biofertilizers (Anabaena sp; Nostoc sp.) and in industrial sectors as food products (Spirulina) have motivated the researchers to come up with much more specific applications of cyanobacteria both in agricultural and in industrial sectors. Therefore, considering the effectiveness and efficiency of cyanobacteria, the present review has enlisted the standout qualities of cyanobacteria and their potential applications in agricultural and industrial sectors for the benefit of human beings and environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Abed RMM, Dobretsov S, Sudesh K (2009) Applications of cyanobacteria in biotechnology. J Appl Microbiol 106(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Al-Haj L, Lui YT, Abed RMM, Gomaa MA, Purton S (2016) Cyanobacteria as chassis for industrial biotechnology: progress and prospects. Life 6(4):42

    Article  CAS  PubMed Central  Google Scholar 

  • Altieri MA (2018) Agroecology: the science of sustainable agriculture. CRC Press,

  • Anahas AMP, Muralitharan G (2018) Characterization of heterocystous cyanobacterial strains for biodiesel production based on fatty acid content analysis and hydrocarbon production. Energy Convers Manag 157:423–437

    Article  CAS  Google Scholar 

  • Arteni AA, Ajlani G, Boekema EJ (2009) Structural organisation of phycobilisomes from Synechocystis sp. strain PCC6803 and their interaction with the membrane. Biochim Biophys Acta 1787(4):272–279

    Article  CAS  PubMed  Google Scholar 

  • Baldev E, MubarakAli D, Shriraman R, Pandiaraj D, Alharbi N, Thajuddin N (2015) Extraction and partial characterization of exopolysaccharides from marine cyanobacteria and their flocculation property. Res J Environ Sci 9(1):28–38

    Article  CAS  Google Scholar 

  • Bellini E, Ciocci M, Savio S, Antonaroli S, Seliktar D, Melino S, Congestri R (2018) Trichormus variabilis (Cyanobacteria) biomass: from the nutraceutical products to novel EPS-cell/protein carrier systems. Mar Drugs 16(9):298

    Article  CAS  PubMed Central  Google Scholar 

  • Bidyarani N, Prasanna R, Babu S, Hossain F, Saxena AK (2016) Enhancement of plant growth and yields in Chickpea (Cicer arietinum L.) through novel cyanobacterial and biofilmed inoculants. Microbiol Res 188-189:97–105

    Article  CAS  PubMed  Google Scholar 

  • Borah D, Nainamalai S, Gopalakrishnan S, Rout J, Alharbi NS, Alharbi SA, Nooruddin T (2018) Biolubricant potential of exopolysaccharides from the cyanobacterium Cyanothece epiphytica. Appl Microbiol Biotechnol 102(8):3635–3647

    Article  CAS  PubMed  Google Scholar 

  • Canfield DE, Erik K, Bo T (2005) The oxygen cycle. In: Canfield DE, Kristensen E, Thamdrup B (eds) Advances in Marine Biology, vol 48. Academic Press, pp 167-204.

  • Castro-García SZ, Chamorro-Cevallos G, Quevedo-Corona L, McCarty MF, Bobadilla-Lugo RA (2018) Beneficial effects of phycobiliproteins from Spirulina maxima in a preeclampsia model. Life Sci 211:17–24

    Article  CAS  PubMed  Google Scholar 

  • Chamizo S, Mugnai G, Rossi F, Certini G, De Philippis R (2018) Cyanobacteria inoculation improves soil stability and fertility on different textured soils: gaining insights for applicability in soil restoration. Front Env Sci 6(49). https://doi.org/10.3389/fenvs.2018.00049

  • Chang Y-K, Show P-L, Lan JC-W, Tsai J-C, Huang C-R (2018) Isolation of C-phycocyanin from Spirulina platensis microalga using Ionic liquid based aqueous two-phase system. Bioresour Technol 270:320–327

    Article  CAS  PubMed  Google Scholar 

  • Chethana S, Nayak CA, Madhusudhan MC, Raghavarao KSMS (2015) Single step aqueous two-phase extraction for downstream processing of C-phycocyanin from Spirulina platensis. J Food Sci Technol 52(4):2415–2421

    Article  CAS  PubMed  Google Scholar 

  • Chi NTL, Duc PA, Mathimani T, Pugazhendhi A (2019) Evaluating the potential of green alga Chlorella sp. for high biomass and lipid production in biodiesel viewpoint. Biocatal Agric Biotechnol 17:184–188

    Article  Google Scholar 

  • Chikkaswamy B, Kumar DS, Srikantaswamy S, Mishra A, Yousefizad S, Yousefizad V, Fallahi E (2015) Effect of cyanobacterial biofertilizer on soil nutrients and Mulberry leaf quality and its impact on silkworm crops. Int J Adv Res Eng Appl Sci 4(1):1–15

    Google Scholar 

  • Chittapun S, Limbipichai S, Amnuaysin N, Boonkerd R, Charoensook M (2018) Effects of using cyanobacteria and fertilizer on growth and yield of rice, Pathum Thani I: a pot experiment. J Appl Phycol 30(1):79–85

    Article  Google Scholar 

  • De Philippis R, Vincenzini M (1998) Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol Rev 22(3):151–175

    Article  Google Scholar 

  • Deviram G, Gyana Prasuna R (2012) Effect of fungicides on proline content of Nostoc species. Int J Pharm Bio Sci 3(4):152–157

    CAS  Google Scholar 

  • Deviram G, Pant G, Prasuna R (2013) Biochemical changes induced by fungicides in nitrogen fixing Nostoc sp. J Environ Sci Eng 55(1):81

    CAS  PubMed  Google Scholar 

  • Deviram G, Prasuna R (2012) Effect of chlorpyriphos on cyanobacterial isolates from rice fields of coastal areas. Int J Math Res 4(4):377–386

    Google Scholar 

  • Dineshbabu G, Uma VS, Mathimani T, Deviram G, Ananth DA, Prabaharan D, Uma L (2017) On-site concurrent carbon dioxide sequestration from flue gas and calcite formation in ossein effluent by a marine cyanobacterium Phormidium valderianum BDU 20041. Energy Convers Manag 141:315–324

    Article  CAS  Google Scholar 

  • Dittmann E, Neilan B, Börner T (2001) Molecular biology of peptide and polyketide biosynthesis in cyanobacteria. Appl Microbiol Biotechnol 57(4):467–473

    Article  CAS  PubMed  Google Scholar 

  • Ehira S, Takeuchi T, Higo A (2018) Spatial separation of photosynthesis and ethanol production by cell type-specific metabolic engineering of filamentous cyanobacteria. Appl Microbiol Biotechnol 102(3):1523–1531

    Article  CAS  PubMed  Google Scholar 

  • Erdrich P, Knoop H, Steuer R, Klamt S (2014) Cyanobacterial biofuels: new insights and strain design strategies revealed by computational modeling. Microb Cell Fact 13(1):128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksen NT (2008) Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine. Appl Microbiol Biotechnol 80(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Esteves-Ferreira AA, Cavalcanti JHF, Vaz MGMV, Alvarenga LV, Nunes-Nesi A, Araújo WL (2017) Cyanobacterial nitrogenases: phylogenetic diversity, regulation and functional predictions. Genet Mol Biol 40(1):261–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleming ED, Castenholz RW (2008) Effects of nitrogen source on the synthesis of the UV-screening compound, scytonemin, in the cyanobacterium Nostoc punctiforme PCC 73102. FEMS Microbiol Ecol 63(3):301–308

    Article  CAS  PubMed  Google Scholar 

  • Grewe CB, Pulz O (2012) The biotechnology of cyanobacteria. In: Whitton BA (ed) Ecology of Cyanobacteria II: Their Diversity in Space and Time. Springer Netherlands, Dordrecht, pp 707–739

    Chapter  Google Scholar 

  • Grzesik M, Romanowska-Duda Z, Kalaji HM (2017) Effectiveness of cyanobacteria and green algae in enhancing the photosynthetic performance and growth of willow (Salix viminalis L.) plants under limited synthetic fertilizers application. Photosynthetica 55(3):510–521

    Article  CAS  Google Scholar 

  • Gutekunst K, Chen X, Schreiber K, Kaspar U, Makam S, Appel J (2014) The bidirectional NiFe-hydrogenase in Synechocystis sp. PCC 6803 is reduced by flavodoxin and ferredoxin and is essential under mixotrophic, nitrate-limiting conditions. J Biol Chem 289(4):1930–1937

    Article  CAS  PubMed  Google Scholar 

  • Haque F, Banayan S, Yee J, Chiang YW (2017) Extraction and applications of cyanotoxins and other cyanobacterial secondary metabolites. Chemosphere 183:164–175

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Hayashi K, Maeda M, Kojima I (1996) Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. J Nat Prod 59(1):83–87

    Article  CAS  PubMed  Google Scholar 

  • Higo A, Ehira S (2019) Anaerobic butanol production driven by oxygen-evolving photosynthesis using the heterocyst-forming multicellular cyanobacterium Anabaena sp. PCC 7120. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-019-09635-z

  • Jindal N, Singh DP, Khattar JIS (2011) Kinetics and physico-chemical characterization of exopolysaccharides produced by the cyanobacterium Oscillatoria formosa. World J Microbiol Biotechnol 27(9):2139–2146

    Article  CAS  Google Scholar 

  • Kanekiyo K, Lee J-B, Hayashi K, Takenaka H, Hayakawa Y, Endo S, Hayashi T (2005) Isolation of an antiviral polysaccharide, nostoflan, from a terrestrial cyanobacterium, Nostoc flagelliforme. J Nat Prod 68(7):1037–1041

    Article  CAS  PubMed  Google Scholar 

  • Khattar JIS, Singh DP, Jindal N, Kaur N, Singh Y, Rahi P, Gulati A (2010) Isolation and characterization of exopolysaccharides produced by the cyanobacterium Limnothrix redekei PUPCCC 116. Appl Biochem Biotechnol 162(5):1327–1338

    Article  CAS  PubMed  Google Scholar 

  • Kheirfam H, Sadeghi SH, Homaee M, Zarei Darki B (2017) Quality improvement of an erosion-prone soil through microbial enrichment. Soil Tillage Res 165:230–238

    Article  Google Scholar 

  • Khetkorn W, Lindblad P, Incharoensakdi A (2012) Inactivation of uptake hydrogenase leads to enhanced and sustained hydrogen production with high nitrogenase activity under high light exposure in the cyanobacterium Anabaena siamensis TISTR 8012. J Biol Eng 6(1):19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klanchui A, Raethong N, Prommeenate P, Vongsangnak W, Meechai A (2017) Cyanobacterial biofuels: strategies and developments on network and modeling. In: Nookaew I (ed) Network Biology. Springer International Publishing, Cham, pp 75–102

    Google Scholar 

  • Kumar M, Bauddh K, Sainger M, Sainger PA, Singh JS, Singh RP (2012) Increase in growth, productivity and nutritional status of rice (Oryza sativa L. cv. Basmati) and enrichment in soil fertility applied with an organic matrix entrapped urea. J Crop Sci Biotechnol 15(2):137–144

    Article  Google Scholar 

  • Lai MJ, Lan EI (2019) Photoautotrophic synthesis of butyrate by metabolically engineered cyanobacteria. Biotechnol Bioeng 116(4). https://doi.org/10.1002/bit.26903

  • Lai YS, Zhou Y, Eustance E, Straka L, Wang Z, Rittmann BE (2018) Cell disruption by cationic surfactants affects bioproduct recovery from Synechocystis sp. PCC 6803. Algal Res 34:250–255

    Article  Google Scholar 

  • Li S, Sun T, Xu C, Chen L, Zhang W (2018) Development and optimization of genetic toolboxes for a fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Metab Eng 48:163–174

    Article  CAS  PubMed  Google Scholar 

  • Liang F, Englund E, Lindberg P, Lindblad P (2018) Engineered cyanobacteria with enhanced growth show increased ethanol production and higher biofuel to biomass ratio. Metab Eng 46:51–59

    Article  CAS  PubMed  Google Scholar 

  • Maestre FT, Solé R, Singh BK (2017) Microbial biotechnology as a tool to restore degraded drylands. Microbial Biotechnol 10(5):1250–1253

    Article  Google Scholar 

  • Mahanty T, Bhattacharjee S, Goswami M, Bhattacharyya P, Das B, Ghosh A, Tribedi P (2017) Biofertilizers: a potential approach for sustainable agriculture development. Environ Sci Pollut Res 24(4):3315–3335

    Article  CAS  Google Scholar 

  • Malam Issa O, Défarge C, Le Bissonnais Y, Marin B, Duval O, Bruand A, D’Acqui LP, Nordenberg S, Annerman M (2007) Effects of the inoculation of cyanobacteria on the microstructure and the structural stability of a tropical soil. Plant Soil 290(1):209–219

    Article  CAS  Google Scholar 

  • Mandal S, Rath J (2015) Glycoconjugates of cyanobacteria and potential drug development from them. In: Extremophilic Cyanobacteria For Novel Drug Development. Springer, pp 45-62

  • Maqubela MP, Mnkeni PNS, Issa OM, Pardo MT, D’Acqui LP (2009) Nostoc cyanobacterial inoculation in South African agricultural soils enhances soil structure, fertility, and maize growth. Plant Soil 315(1):79–92

    Article  CAS  Google Scholar 

  • Mathimani T, Baldinelli A, Rajendran K, Prabakar D, Matheswaran M, van Leeuwen RP, Pugazhendhi A (2018a) Review on cultivation and thermochemical conversion of microalgae to fuels and chemicals: process evaluation and knowledge gaps. J Clean Prod 198:575–586

    Article  CAS  Google Scholar 

  • Mathimani T, Bhumathi D, Ahamed TS, Dineshbabu G, Deviram G, Uma L, Prabaharan D (2017) Semicontinuous outdoor cultivation and efficient harvesting of marine Chlorella vulgaris BDUG 91771 with minimum solid co-precipitation and high floc recovery for biodiesel. Energy Convers Manag 149:13–25

    Article  CAS  Google Scholar 

  • Mathimani T, Uma L, Prabaharan D (2015) Homogeneous acid catalysed transesterification of marine microalga Chlorella sp. BDUG 91771 lipid–an efficient biodiesel yield and its characterization. Renew Energy 81:523–533

    Article  CAS  Google Scholar 

  • Mathimani T, Uma L, Prabaharan D (2018b) Formulation of low-cost seawater medium for high cell density and high lipid content of Chlorella vulgaris BDUG 91771 using central composite design in biodiesel perspective. J Clean Prod 198:575–586

    Article  CAS  Google Scholar 

  • Mazard S, Penesyan A, Ostrowski M, Paulsen I, Egan S (2016) Tiny microbes with a big impact: the role of cyanobacteria and their metabolites in shaping our future. Mar Drugs 14(5):97

    Article  CAS  PubMed Central  Google Scholar 

  • Miao R, Wegelius A, Durall C, Liang F, Khanna N, Lindblad P (2017) Engineering cyanobacteria for biofuel production. In: Modern Topics in the Phototrophic Prokaryotes. Springer, pp 351-393

  • Mishra U, Pabbi S (2004) Cyanobacteria: a potential biofertilizer for rice. Resonance 9(6):6–10

    Article  Google Scholar 

  • Moghaddam FD, Hamedi S, Dezfulian M (2016) Anti-tumor effect of C-phycocyanin from Anabaena sp.ISC55 in inbred BALB/c mice injected with 4 T1 breast cancer cell. Comp Clin Path 25(5):947–952

    Article  CAS  Google Scholar 

  • Mohan A, Kumar B (2017) Growth performance and yield potential of cereal crops (wheat, maize and barley) in association with cyanobacteria. Int J Curr Microbiol App Sci 6(10):744–758

    Article  CAS  Google Scholar 

  • Mohite BV, Koli SH, Narkhede CP, Patil SN, Patil SV (2017) Prospective of microbial exopolysaccharide for heavy metal exclusion. Appl Biochem Biotechnol 183(2):582–600

    Article  CAS  PubMed  Google Scholar 

  • Moreno J, Vargas MA, Madiedo JM, Muñoz J, Rivas J, Guerrero MG (2000) Chemical and rheological properties of an extracellular polysaccharide produced by the cyanobacterium Anabaena sp. ATCC 33047. Biotechnol Bioeng 67(3):283–290

    Article  CAS  PubMed  Google Scholar 

  • Morsy FM, Nafady NA, Abd-Alla MH, Elhady DA (2014) Green synthesis of silver nanoparticles by water soluble fraction of the extracellular polysaccharides/matrix of the cyanobacterium Nostoc commune and its application as a potent fungal surface sterilizing agent of seed crops. Universal J Microbiol Res 2(2):36–43

    CAS  Google Scholar 

  • Mota R, Rossi F, Andrenelli L, Pereira SB, De Philippis R, Tamagnini P (2016) Released polysaccharides (RPS) from Cyanothece sp. CCY 0110 as biosorbent for heavy metals bioremediation: interactions between metals and RPS binding sites. Appl Microbiol Biotechnol 100(17):7765–7775

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-Rojas M, Román JR, Roncero-Ramos B, Erickson TE, Merritt DJ, Aguila-Carricondo P, Cantón Y (2018) Cyanobacteria inoculation enhances carbon sequestration in soil substrates used in dryland restoration. Sci Total Environ 636:1149–1154

    Article  CAS  PubMed  Google Scholar 

  • Nanda B, Tripathy SK, Padhi S (1991) Effect of algalization on seed germination of vegetable crops. World J Microbiol Biotechnol 7(6):622–623

    Article  CAS  PubMed  Google Scholar 

  • Nozzi NE, Oliver JW, Atsumi S (2013) Cyanobacteria as a platform for biofuel production. Front Bioeng Biotechnol 1:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliveira DTd, Turbay Vasconcelos C, Feitosa AMT, Aboim JB, Oliveira AdNd, Xavier LP, Santos AS, Gonçalves EC, Rocha Filho GNd, Nascimento LASd (2018) Lipid profile analysis of three new Amazonian cyanobacteria as potential sources of biodiesel. Fuel 234:785–788

  • Osman MEH, El-Sheekh MM, El-Naggar AH, Gheda SF (2010) Effect of two species of cyanobacteria as biofertilizers on some metabolic activities, growth, and yield of pea plant. Biol Fert. Soil 46(8):861–875

    Article  Google Scholar 

  • Ozturk S, Aslim B, Suludere Z, Tan S (2014) Metal removal of cyanobacterial exopolysaccharides by uronic acid content and monosaccharide composition. Carbohydr Polym 101:265–271

    Article  CAS  PubMed  Google Scholar 

  • Pandey KD, Shukla PN, Giri DD, Kashyap AK (2005) Cyanobacteria in alkaline soil and the effect of cyanobacteria inoculation with pyrite amendments on their reclamation. Biol Fert Soil 41(6):451–457

    Article  Google Scholar 

  • Pang K, Tang Q, Chen L, Wan B, Niu C, Yuan X, Xiao S (2018) Nitrogen-fixing heterocystous cyanobacteria in the Tonian period. Curr Biol 28(4):616–622 e611

    Article  CAS  PubMed  Google Scholar 

  • Park C-H, Li X-R, Jia R-L, Hur J-S (2017a) Combined application of cyanobacteria with soil fixing chemicals for rapid induction of biological soil crust formation. Arid Land Res Manag 31(1):81–93

    Article  CAS  Google Scholar 

  • Park C-H, Li XR, Zhao Y, Jia RL, Hur J-S (2017b) Rapid development of cyanobacterial crust in the field for combating desertification. PLOS ONE 12(6):e0179903. https://doi.org/10.1371/journal.pone.0179903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prabakar D, Manimudi VT, Mathimani T, Kumar G, Rene ER, Pugazhendhi A (2018) Pretreatment technologies for industrial effluents: critical review on bioenergy production and environmental concerns. J Environ Manag 218:165–180

    Article  CAS  Google Scholar 

  • Prasanna R, Adak A, Verma S, Bidyarani N, Babu S, Pal M, Shivay YS, Nain L (2015a) Cyanobacterial inoculation in rice grown under flooded and SRI modes of cultivation elicits differential effects on plant growth and nutrient dynamics. Ecol Eng 84:532–541

    Article  Google Scholar 

  • Prasanna R, Hossain F, Babu S, Bidyarani N, Adak A, Verma S, Shivay YS, Nain L (2015b) Prospecting cyanobacterial formulations as plant-growth-promoting agents for maize hybrids. S Afr J Plant Soil 32(4):199–207

    Article  Google Scholar 

  • Prasanna R, Ramakrishnan B, Simranjit K, Ranjan K, Kanchan A, Hossain F, Nain L (2017) Cyanobacterial and rhizobial inoculation modulates the plant physiological attributes and nodule microbial communities of chickpea. Arch Microbiol 199(9):1311–1323

    Article  CAS  PubMed  Google Scholar 

  • Quintana N, Van der Kooy F, Van de Rhee MD, Voshol GP, Verpoorte R (2011) Renewable energy from cyanobacteria: energy production optimization by metabolic pathway engineering. Appl Microbiol Biotechnol 91(3):471–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raja R, Hemaiswarya S, Ganesan V, Carvalho IS (2016) Recent developments in therapeutic applications of cyanobacteria. Crit Rev Microbiol 42(3):394–405

    CAS  PubMed  Google Scholar 

  • Rastogi RP, Sinha RP (2009) Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnol Adv 27(4):521–539

    Article  CAS  PubMed  Google Scholar 

  • Reddy RS, Triveni S (2016) Biofertilizers for sustainable production in oil seed crops.

  • Rodriguez S, Torres FG, López D (2017) Preparation and characterization of polysaccharide films from the cyanobacteria Nostoc commune. Polym Renew Resour 8 (4)

  • Román JR, Roncero-Ramos B, Chamizo S, Rodríguez-Caballero E, Cantón Y (2018) Restoring soil functions by means of cyanobacteria inoculation: importance of soil conditions and species selection. Land Degrad Dev 29(9):3184–3193

    Article  Google Scholar 

  • Rossi F, Li H, Liu Y, De Philippis R (2017) Cyanobacterial inoculation (cyanobacterisation): perspectives for the development of a standardized multifunctional technology for soil fertilization and desertification reversal. Earth-Sci Rev 171:28–43

    Article  Google Scholar 

  • Saini DK, Pabbi S, Shukla P (2018) Cyanobacterial pigments: perspectives and biotechnological approaches. Food Chem Toxicol 120:616–624

    Article  CAS  PubMed  Google Scholar 

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Annals of botany 111(5):743–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarsekeyeva F, Zayadan BK, Usserbaeva A, Bedbenov VS, Sinetova MA, Los DA (2015) Cyanofuels: biofuels from cyanobacteria. Reality and perspectives. Photosynthesis Res 125(1):329–340

    Article  CAS  Google Scholar 

  • Schulz K, Mikhailyuk T, Dreßler M, Leinweber P, Karsten U (2016) Biological soil crusts from coastal dunes at the Baltic Sea: cyanobacterial and algal biodiversity and related soil properties. Microbial Ecol 71(1):178–193

    Article  CAS  Google Scholar 

  • Senni K, Pereira J, Gueniche F, Delbarre-Ladrat C, Sinquin C, Ratiskol J, Godeau G, Fischer A-M, Helley D, Colliec-Jouault S (2011) Marine polysaccharides: a source of bioactive molecules for cell therapy and tissue engineering. Mar Drugs 9(9):1664–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh JS, Kumar A, Rai AN, Singh DP (2016) Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front Microbiol 7(529). https://doi.org/10.3389/fmicb.2016.00529

  • Sinha RP, Häder D-P (2008) UV-protectants in cyanobacteria. Plant Sci 174(3):278–289

    Article  CAS  Google Scholar 

  • Sitohy M, Osman A, Abdel Ghany AG, Salama A (2015) Antibacterial phycocyanin from Anabaena oryzae SOS13. 2015 8 (4):10

  • Song W, Zhao C, Mu S, Pan X, Zhang D, Al-Misned FA, Mortuza MG (2015) Effects of irradiation and pH on fluorescence properties and flocculation of extracellular polymeric substances from the cyanobacterium Chroococcus minutus. Colloids Surf B: Biointerfaces 128:115–118

    Article  CAS  PubMed  Google Scholar 

  • Sood A, Renuka N, Prasanna R, Ahluwalia AS (2015) Cyanobacteria as potential options for wastewater treatment. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds) Phytoremediation: Management of Environmental Contaminants, Volume 2. Springer International Publishing, Cham, pp 83-93. doi:https://doi.org/10.1007/978-3-319-10969-5_8

  • Tarman K, Lindequist U, Mundt S (2013) Metabolites of marine microorganisms and their pharmacological activities. Marine Microbiol:393–416

  • Thangaraj B, Rajasekar DP, Vijayaraghavan R, Garlapati D, Devanesan AA, Lakshmanan U, Dharmar P (2017) Cytomorphological and nitrogen metabolic enzyme analysis of psychrophilic and mesophilic Nostoc sp.: a comparative outlook. 3. Biotech 7(2):107. https://doi.org/10.1007/s13205-017-0724-7

    Article  Google Scholar 

  • Tharifkhan SA, Garlapati D, Arulraj D, Lakshmanan U, Prabaharan D (2018) Growth and nitrogen (N) metabolizing enzymes of mesophilic and psychrophilic heterocystous cyanobacteria—in response to temperature regimes. Res Rev: A J Life Sci 8(3):31–43

    Google Scholar 

  • Tiwari ON, Khangembam R, Shamjetshabam M, Sharma AS, Oinam G, Brand JJ (2015) Characterization and optimization of bioflocculant exopolysaccharide production by cyanobacteria Nostoc sp. BTA97 and Anabaena sp. BTA990 in Culture Conditions. Appl Biochem Biotechnol 176(7):1950–1963

    Article  CAS  PubMed  Google Scholar 

  • Vargas SR, dos Santos PV, Zaiat M, do Carmo Calijuri M (2018) Optimization of biomass and hydrogen production by Anabaena sp. (UTEX 1448) in nitrogen-deprived cultures. Biomass Bioenergy 111:70–76

    Article  CAS  Google Scholar 

  • Volk R-B, Furkert FH (2006) Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiol Res 161(2):180–186

    Article  CAS  PubMed  Google Scholar 

  • Weil RR, Brady NC (2017) The nature and properties of soils. Pearson,

  • Whitton BA (2002) Soils and rice-fields. In: Whitton BA, Potts M (eds) The Ecology of Cyanobacteria: Their Diversity in Time and Space. Springer Netherlands, Dordrecht, pp 233–255

    Chapter  Google Scholar 

  • Xiong S, Fan J, Kitazato K (2010) The antiviral protein cyanovirin-N: the current state of its production and applications. Appl Microbiol Biotechnol 86(3):805–812

    Article  CAS  PubMed  Google Scholar 

  • Yodsang P, Raksajit W, Aro E-M, Mäenpää P, Incharoensakdi A (2018) Factors affecting photobiological hydrogen production in five filamentous cyanobacteria from Thailand. Photosynthetica 56(1):334–341

    Article  CAS  Google Scholar 

  • Zhang Y, Duan P, Zhang P, Li M (2018) Variations in cyanobacterial and algal communities and soil characteristics under biocrust development under similar environmental conditions. Plant Soil 429(1):241–251

    CAS  Google Scholar 

  • Zhou Y, Nguyen BT, Lai YS, Zhou C, Xia S, Rittmann BE (2016) Using flow cytometry to evaluate thermal extraction of EPS from Synechocystis sp. PCC 6803. Algal Res 20:276–281

    Article  Google Scholar 

Download references

Acknowledgements

Author Dr. Deviram Garlapati greatly acknowledges the National Centre for Coastal Research (NCCR), Ministry of Earth Sciences (MoES), Govt. of India. Author Dr. T. Mathimani acknowledges the Department of Science and Technology–Govt. of India for awarding INSPIRE Faculty (Grant no: DST/INSPIRE/04/2017/001922 & IFA17-LSPA87).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arivalagan Pugazhendhi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garlapati, D., Chandrasekaran, M., Devanesan, A. et al. Role of cyanobacteria in agricultural and industrial sectors: an outlook on economically important byproducts. Appl Microbiol Biotechnol 103, 4709–4721 (2019). https://doi.org/10.1007/s00253-019-09811-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-09811-1

Keywords

Navigation