Skip to main content
Log in

Exploiting tandem repetitive promoters for high-level production of 3-hydroxypropionic acid

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

High-level biosynthesis of desired metabolites is challenging due to complexity of metabolic networks. Here, we report that platform chemical 3-hydroxypropionic acid (3-HP) can be overproduced through promoter engineering and growth-sustaining cultivation, two parallel strategies relying on RNA polymerases (RNAPs). First, we screened a promoter library and revealed that IPTG-inducible tac promoter was most effective for overexpression of PuuC, an endogenous aldehyde dehydrogenase catalyzing 3-HP biosynthesis in Klebsiella pneumoniae. Next, tandem repetitive tac promoters were harnessed to accommodate adequate RNAPs. When three tandem repetitive tac promoters were recruited to overexpress PuuC, up to 102.61 g/L 3-HP was produced. This is the highest 3-HP titer reported so far. In addition, lactic acid completely vanished during the late stage of fermentation. The backflow of lactic acid to pyruvic acid saves the trouble of downstream separation of lactic acid from 3-HP, which has long been a mission impossible because they are small-molecule isomers. Furthermore, timely removal of acid stress and replenishment of nitrogen source are crucial for 3-HP biosynthesis. A mathematical model shows that RNAPs modulate the tradeoff between bacterial growth and 3-HP formation. Overall, promoter engineering and growth-promoting cultivation jointly leverage RNAPs to maximize 3-HP. This study provides a paradigm for maximizing growth-coupled metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Acknowledgements

Special gratitude is given to Geran Tian for her devotion to refining this manuscript.

Funding

This study was funded by grants from the National Natural Science Foundation of China (No. 21476011), the National High Technology Research and Development Program (863 Program) (No. 2015AA021003), the National Basic Research Program of China (973 Program) (No. 2012CB725200), and the Fundamental Research Funds for the Central Universities (YS1407).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingfang Tian.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 315 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, P., Ma, C., Xu, L. et al. Exploiting tandem repetitive promoters for high-level production of 3-hydroxypropionic acid. Appl Microbiol Biotechnol 103, 4017–4031 (2019). https://doi.org/10.1007/s00253-019-09772-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-09772-5

Keywords

Navigation