Skip to main content

Advertisement

Log in

A simple biosynthetic pathway for 2,3-butanediol production in Thermococcus onnurineus NA1

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The biosynthetic pathway of 2,3-butanediol (2,3-BDO) production from pyruvate under anaerobic conditions includes three enzymes: acetolactate synthase (ALS), acetolactate decarboxylase (ALDC), and acetoin reductase (AR). Recently, in anaerobic hyperthermophilic Pyrococcus furiosus, it has been reported that acetoin, a precursor of 2,3-BDO, is produced from pyruvate by ALS through a temperature-dependent metabolic switch. In this study, we first attempted to produce 2,3-BDO from Thermococcus onnurineus NA1 using a simple biosynthetic pathway by two enzymes (ALS and AR) at a high temperature. Two heterologous genes, acetolactate synthase (alsS) from Pyrococcus sp. NA2 and alcohol dehydrogenase (adh) from T. guaymacensis, were introduced and expressed in T. onnurineus NA1. The mutant strain produced approximately 3.3 mM 2,3-BDO at 80 °C. An acetyl-CoA synthetase IIIα (TON_1001) was further deleted to enhance 2,3-BDO production, and the mutant strain showed a 25% increase in the specific production of 2,3-BDO. Furthermore, when carbon monoxide (CO) gas was added as a reductant, specific production of 2,3-BDO increased by 45%. These results suggest a new biosynthetic pathway for 2,3-BDO and demonstrate the possibility of T. onnurineus NA1 as a platform strain for 2,3-BDO production at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Awano T, Wilming A, Tomita H, Yokooji Y, Fukui T, Imanaka T, Atomi H (2014) Characterization of two members among the five ADP-forming acyl coenzyme a (acyl-CoA) synthetases reveals the presence of a 2-(imidazol-4-yl)acetyl-CoA synthetase in Thermococcus kodakarensis. J Bacteriol 196:140–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bae SS, Kim YJ, Yang SH, Lim JK, Jeon JH, Lee HS, Kang SG, Kim SJ, Lee JH (2006) Thermococcus onnurineus sp. nov., a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent area at the PACMANUS field. J Microbiol Biotechnol 16:1826–1831

    CAS  Google Scholar 

  • Balch WE, Wolfe RS (1976) New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Basen M, Schut GJ, Nguyen DM, Lipscomb GL, Benn RA, Prybol CJ, Vaccaro BJ, Poole FL, Kelly RM, Adams MWW (2014) Single gene insertion drives bioalcohol production by a thermophilic archaeon. Proc Natl Acad Sci 111:17618–17623

    Article  CAS  PubMed  Google Scholar 

  • Harvey BG, Merriman WW, Quintana RL (2016) Renewable gasoline, solvents, and fuel additives from 2,3-Butanediol. ChemSusChem 9:1814–1819

    Article  CAS  PubMed  Google Scholar 

  • Hawkins AB, Lian H, Zeldes BM, Loder AJ, Lipscomb GL, Schut GJ, Keller MW, Adams MWW, Kelly RM (2015) Bioprocessing analysis of Pyrococcus furiosus strains engineered for CO2-based 3-hydroxypropionate production. Biotechnol Bioeng 112:1533–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hileman TH, Santangelo TJ (2012) Genetics techniques for Thermococcus kodakarensis. Front Microbiol 3:1–12

    Article  Google Scholar 

  • Holden JF, Takai K, Summit M, Bolton S, Zyskowski J, Baross JA (2001) Diversity among three novel groups of hyperthermophilic deep-sea Thermococcus species from three sites in the northeastern Pacific Ocean. FEMS 36:51–60

    CAS  Google Scholar 

  • Jeong JY, Yim HS, Ryu JY, Lee HS, Lee JH, Seen DS, Kang SG (2012) One-step sequence-and ligation-independent cloning as a rapid and versatile cloning method for functional genomics studies. Appl Environ Microbiol 78:5440–5443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji XJ, Huang H, Ouyang PK (2011) Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv 29:351–364

    Article  CAS  PubMed  Google Scholar 

  • Jung SG, Jang JH, Kim AY, Lim MC, Kim B, Lee J, Kim YR (2013) Removal of pathogenic factors from 2,3-butanediol-producing Klebsiella species by inactivating virulence-related wabG gene. Appl Microbiol Biotechnol 97:1997–2007

    Article  CAS  PubMed  Google Scholar 

  • Kanai T, Simons JR, Tsukamoto R, Nakajima A, Omori Y, Matsuoka R, Beppu H, Imanaka T, Atomi H (2015) Overproduction of the membrane-bound [NiFe]-hydrogenase in Thermococcus kodakarensis and its effect on hydrogen production. Front Microbiol 6:847

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim MS, Bae SS, Kim YJ, Kim TW, Lim JK, Lee SH, Choi AR, Jeon JH, Lee JH, Lee HS, Kang SG (2013) CO-dependent H2 production by genetically engineered Thermococcus onnurineus NA1. Appl Environ Microbiol 79:2048–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MS, Choi AR, Lee SH, Jung HC, Bae SS, Yang TJ, Jeon JH, Lim JK, Youn H, Kim TW, Lee HS, Kang SG (2015) A novel CO-responsive transcriptional regulator and enhanced H2 production by an engineered Thermococcus onnurineus NA1 strain. Appl Environ Microbiol 81:1708–1714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Köpke M, Gerth ML, Maddock DJ, Mueller AP, Liew FM, Simpson SD, Patrick WM (2014) Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase. Appl Environ Microbiol 80:3394–3303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leang C, Ueki T, Nevin KP, Lovley DR (2013) A genetic system for Clostridium ljungdahlii: a chassis for autotrophic production of biocommodities and a model homoacetogen. Appl Environ Microbiol 79:1102–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HS, Bae SS, Kim MS, Kwon KK, Kang SG, Lee JH (2011) Complete genome sequence of hyperthermophilic Pyrococcus sp. strain NA2, isolated from a deep-sea hydrothermal vent area. J Bacteriol 193:3666–3667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SH, Kim M-S, Bae SS, Choi AR, Lee JW, Kim TW, Lee J-H, Lee HS, Kang SG (2013) Comparison of CO-dependent H2 production with strong promoters in Thermococcus onnurineus NA1. Appl Microbiol Biotechnol 98:979–986

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Kim M-S, Jung HC, Lee J, Lee J-H, Lee HS, Kang SG (2015) Screening of a novel strong promoter by RNA sequencing and its application to H2 production in a hyperthermophilic archaeon. Appl Microbiol Biotechnol 99:4085–4092

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Kim M-S, Lee J-H, Kim TW, Bae SS, Lee S-M, Jung HC, Yang T-J, Choi AR, Cho Y-J, Lee J-H, Kwon KK, Lee HS, Kang SG (2016) Adaptive engineering of a hyperthermophilic archaeon on CO and discovering the underlying mechanism by multi-omics analysis. Sci Rep 6:22896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SH, Kim M-S, Kim YJ, Kim TW, Kang SG, Lee HS (2017) Transcriptomic profiling and its implications for the H2 production of a non-methanogen deficient in the frhAGB-encoding hydrogenase. Appl Microbiol Biotechnol 101:5081–5088

    Article  CAS  PubMed  Google Scholar 

  • Li L, Zhang L, Li K, Wang Y, Gao C, Han B, Ma C, Xu P (2013) A newly isolated Bacillus licheniformis strain thermophilically produces 2,3-butanediol, a platform and fuel bio-chemical. Biotechnol Biofuels 6:123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liew F, Henstra AM, Winzer K, Köpke M, Simpson SD, Minton NP (2016) Insights into CO2 fixation pathway of Clostridium autoethanogenum by targeted mutagenesis. MBio 7:3

    Article  Google Scholar 

  • Liew F, Henstra AM, Köpke M, Winzer K, Simpson SD, Minton NP (2017) Metabolic engineering of Clostridium autoethanogenum for selective alcohol production. Metab Eng 40:104–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen DMN, Lipscomb GL, Schut GJ, Vaccaro BJ, Basen M, Kelly RM, Adams MWW (2016) Temperature-dependent acetoin production by Pyrococcus furiosus is catalyzed by a biosynthetic acetolactate synthase and its deletion improves ethanol production. Metab Eng 34:71–79

    Article  CAS  PubMed  Google Scholar 

  • Nielsen DR, Yoon SH, Yuan CJ, Prather KLJ (2010) Metabolic engineering of acetoin and meso-2,3-butanediol biosynthesis in E. coli. Biotechnol J 5:274–284

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Fukui T, Atomi H (2003) Targeted gene disruption by homologous recombination in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 185:210–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schut GJ, Lipscomb GL, Nguyen DMN, Kelly RM, Adams MWW (2016) Heterologous production of an energy-conserving carbon monoxide dehydrogenase complex in the hyperthermophile Pyrococcus furiosus. Front Microbiol 7:1–9

    Article  Google Scholar 

  • Shikata K, Fukui T, Atomi H, Imanaka T (2007) A novel ADP-forming succinyl-CoA synthetase in Thermococcus kodakaraensis structurally related to the archaeal nucleoside diphosphate-forming acetyl-CoA synthetases. J Biol Chem 282:26963–26970

    Article  CAS  PubMed  Google Scholar 

  • Shrivastav A, Lee J, Kim HY, Kim YR (2013) Recent insights in the removal of Klebseilla pathogenicity factors for the industrial production of 2,3-butanediol. J Microbiol Biotechnol 23:885–896

    Article  CAS  PubMed  Google Scholar 

  • Tan Y, Liu ZY, Liu Z, Li FL (2015) Characterization of an acetoin reductase/2,3-butanediol dehydrogenase from Clostridium ljungdahlii DSM 13528. Enzym Microb Technol 79-80:1–7

    Article  CAS  Google Scholar 

  • Thorgersen MP, Lipscomb GL, Schut GJ, Kelly RM, Adams MWW (2014) Deletion of acetyl-CoA synthetases I and II increases production of 3-hydroxypropionate by the metabolically-engineered hyperthermophile Pyrococcus furiosus. Metab Eng 22:83–88

    Article  CAS  PubMed  Google Scholar 

  • Xiao Z, Wang X, Huang Y, Huo F, Zhu X, Xi L, Lu JR (2012) Thermophilic fermentation of acetoin and 2,3-butanediol by a novel Geobacillus strain. Biotechnol Biofuels 5(1):88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Zhang Z (2018) Recent advances on production of 2,3-butanedioal using engineered microbes. Biotechnol Adv (In press)https://doi.org/10.1016/j.biotechadv.2018.03.019

  • Ying X, Ma K (2011) Characterization of a zinc-containing alcohol dehydrogenase with stereoselectivity from the hyperthermophilic archaeon Thermococcus guaymasensis. J Bacteriol 193:3009–3019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the KIOST In-house Program (PE99722) and the understanding of the deep-sea biosphere on seafloor hydrothermal vents in the Indian Ridge Program (20170411) of the Ministry of Ocean and Fisheries of the Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

GBL and YJK: performed experiments and wrote the article. JKL and TWK: contributed critical comments on the manuscript. SGK and HSL: conceptualized and designed the experiments. JHL: wrote the paper with input from the co-authors.

Corresponding authors

Correspondence to Yun Jae Kim or Jung-Hyun Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 173 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, G.B., Kim, Y.J., Lim, J.K. et al. A simple biosynthetic pathway for 2,3-butanediol production in Thermococcus onnurineus NA1. Appl Microbiol Biotechnol 103, 3477–3485 (2019). https://doi.org/10.1007/s00253-019-09724-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-09724-z

Keywords

Navigation