Skip to main content
Log in

vB_LspM-01: a novel myovirus displaying pseudolysogeny in Lysinibacillus sphaericus C3-41

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Lysinibacillus sphaericus has great application potential not only in the biocontrol of mosquitoes but also in the bioremediation of toxic metals. Phages contribute to the genetic diversity and niche adaptation of bacteria, playing essential roles in their life cycle, but may also cause economic damage for industrially important bacteria through phage contamination during fermentation. In this study, the L. sphaericus phage vB_LspM-01, which belongs to the Myoviridae family, was isolated and characterized. Results showed that vB_LspM-01 could specifically infect most tested L. sphaericus isolates but was not active against isolates belonging to other species. Furthermore, phage-born endolysin exhibited a broader antimicrobial spectrum than the host range of the phage. The vB_LspM-01 genome had no obvious similarity with that of its host, and ca. 22.6% of putative ORFs could not get a match with the public databases. Phylogenic analysis based on the putative terminase large subunit showed high similarity with the phages identified with pac-type headful packaging. The vB_LspM-01 encoding genes were only detected in a tiny percentage of L. sphaericus C3-41 individual cells in the wild population, whereas they showed much higher frequency in the resistant population grown within the plaques; however, the phage genes could not be stably inherited during host cell division. Additionally, the vB_LspM-01 encoding genes were only detected in the host population during the logarithmic growth phase. The mitomycin C induction helped the propagation and lysogeny-lysis switch of vB_LspM-01. The study demonstrated that vB_LspM-01 can be present in a pseudolysogenic state in L. sphaericus C3-41 populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ackermann H-W, DuBow MS (1987) Viruses of prokaryotes. in: general properties of bacteriophages, Vol. I. CRC Press, Boca Raton, p 202

    Google Scholar 

  • Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang YJ, Wishart DS (2016) PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44(W1):W16–W21

    Article  CAS  Google Scholar 

  • Bertani G (1953) Lysogenic versus lytic cycle of phage multiplication. Cold Spring Harb Symp Quant Biol 18:65–70

    Article  CAS  Google Scholar 

  • Borek AL, Obszanska K, Hryniewicz W, Sitkiewicz I (2012) Typing of Streptococcus pyogenes strains using the phage profiling method. Virulence 3(6):534–538

    Article  Google Scholar 

  • Bott K, Strauss B (1965) The carrier state of Bacillus subtilis infected with the transducing bacteriophage Sp10. Virology 25:212–225

    Article  CAS  Google Scholar 

  • Catalano CE, Cue D, Feiss M (1995) Virus DNA packaging: the strategy used by phage lambda. Mol Microbiol 16(6):1075–1086

    Article  CAS  Google Scholar 

  • Cenens W, Mebrhatu MT, Makumi A, Ceyssens PJ, Lavigne R, Van Houdt R, Taddei F, Aertsen A (2013) Expression of a novel P22 ORFan gene reveals the phage carrier state in Salmonella typhimurium. PLoS Genet 9(2):e1003269

    Article  CAS  Google Scholar 

  • Chandry PS, Moore SC, Davidson BE, Hillier AJ (2002) Transduction of concatemeric plasmids containing the cos site of Lactococcus lactis bacteriophage sk1. FEMS Microbiol Lett 216(1):85–90

    Article  CAS  Google Scholar 

  • Chirakadze I, Perets A, Ahmed R (2009) Phage typing. Methods Mol Biol 502:293–305

    Article  CAS  Google Scholar 

  • Desiere F, Lucchini S, Brussow H (1999) Comparative sequence analysis of the DNA packaging, head, and tail morphogenesis modules in the temperate cos-site Streptococcus thermophilus bacteriophage Sfi21. Virology 260(2):244–253

    Article  CAS  Google Scholar 

  • Duffy C, Feiss M (2002) The large subunit of bacteriophage lambda’s terminase plays a role in DNA translocation and packaging termination. J Mol Biol 316(3):547–561

    Article  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:1–19

    Article  Google Scholar 

  • Fortier LC, Sekulovic O (2013) Importance of prophages to evolution and virulence of bacterial pathogens. Virulence 4(5):354–365

    Article  Google Scholar 

  • Fu P, Ge Y, Wu YM, Zhao N, Yuan ZM, Hu XM (2017a) The LspC3-41I restriction-modification system is the major determinant for genetic manipulations of Lysinibacillus sphaericus C3-41. BMC Microbiol 17:116

    Article  Google Scholar 

  • Fu P, Xiang X, Ge Y, Yuan Z, Hu X (2017b) Differential expression of duplicated binary toxin genes binA/binB in Lysinibacillus sphaericus C3-41. Lett Appl Microbiol 65(1):90–97

    Article  CAS  Google Scholar 

  • Geng PL, Tian S, Yuan ZM, Hu XM (2017) Identification and genomic comparison of temperate bacteriophages derived from emetic Bacillus cereus. PLoS One 12(9):e0184572

    Article  Google Scholar 

  • Gillis A, Mahillon J (2014) Influence of lysogeny of tectiviruses GIL01 and GIL16 on Bacillus thuringiensis growth, biofilm formation, and swarming motility. Appl Environ Microbiol 80(24):7620–7630

    Article  Google Scholar 

  • Goh S (2016) Phage transduction. Methods Mol Biol 1476:177–185

    Article  Google Scholar 

  • Gomez-Garzon C, Hernandez-Santana A, Dussan J (2017) A genome-scale metabolic reconstruction of Lysinibacillus sphaericus unveils unexploited biotechnological potentials. PLoS One 12(6):e0179666

    Article  Google Scholar 

  • Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35(Web Server):W52–W57

    Article  Google Scholar 

  • Gual A, Camacho AG, Alonso JC (2000) Functional analysis of the terminase large subunit, G2P, of Bacillus subtilis bacteriophage SPP1. J Biol Chem 275(45):35311–35319

    Article  CAS  Google Scholar 

  • Han B, Liu HZ, Hu XM, Cai YJ, Zheng DS, Yuan ZM (2007) Molecular characterization of a glucokinase with broad hexose specificity from Bacillus sphaericus strain C3-41. Appl Environ Microbiol 73(11):3581–3586

    Article  CAS  Google Scholar 

  • Hu XM, Hansen BM, Hendriksen NB, Yuan ZM (2006) Detection and phylogenic analysis of one anthrax virulence plasmid pXO1 conservative open reading frame ubiquitous presented within Bacillus cereus group strains. Biochem Biophy Res Commun 349(4):1214–1219

    Article  CAS  Google Scholar 

  • Hu XM, Fan W, Han B, Liu HZ, Zheng D, Li Q, Dong W, Yan J, Gao M, Berry C, Yuan Z (2008) Complete genome sequence of the mosquitocidal bacterium Bacillus sphaericus C3-41 and comparison with those of closely related bacillus species. J Bacteriol 190(8):2892–2902

    Article  CAS  Google Scholar 

  • Ikeda H, Tomizawa JI (1965) Transducing fragments in generalized transduction by phage P1. I Molecular origin of the fragments. J Mol Biol 14(1):85–109

    Article  CAS  Google Scholar 

  • Ivanova N, Sorokin A, Anderson I, Galleron N, Candelon B, Kapatral V, Bhattacharyya A, Reznik G, Mikhailova N, Lapidus A, Chu L, Mazur M, Goltsman E, Larsen N, D'Souza M, Walunas T, Grechkin Y, Pusch G, Haselkorn R, Fonstein M, Ehrlich SD, Overbeek R, Kyrpides N (2003) Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423(6935):87–91

    Article  CAS  Google Scholar 

  • Khemayan K, Pasharawipas T, Puiprom O, Sriurairatana S, Suthienkul O, Flegel TW (2006) Unstable lysogeny and pseudolysogeny in Vibrio harveyi siphovirus-like phage 1. Appl Environ Microbiol 72(2):1355–1363

    Article  CAS  Google Scholar 

  • Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35(9):3100–3108

    Article  CAS  Google Scholar 

  • Latino L, Midoux C, Hauck Y, Vergnaud G, Pourcel C (2016) Pseudolysogeny and sequential mutations build multiresistance to virulent bacteriophages in Pseudomonas aeruginosa. Microbiology-Sgm 162:748–763

    Article  CAS  Google Scholar 

  • Liu G, Song L, Shu C, Wang P, Deng C, Peng Q, Lereclus D, Wang X, Huang D, Zhang J, Song F (2013) Complete genome sequence of Bacillus thuringiensis subsp. kurstaki strain HD73. Genome Announc 1(2):e0008013

    Article  Google Scholar 

  • Lood R, Collin M (2011) Characterization and genome sequencing of two Propionibacterium acnes phages displaying pseudolysogeny. BMC Genomics 12

  • Los M, Wegrzyn G (2012) Pseudolysogeny. Adv Virus Res 82:339–349

    Article  CAS  Google Scholar 

  • Lowe TM, Chan PP (2016) tRNAscan-SE on-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44(W1):W54–W57

    Article  CAS  Google Scholar 

  • Mahony J, Martel B, Tremblay DM, Neve H, Heller KJ, Moineau S, van Sinderen D (2013) Identification of a new P335 subgroup through molecular analysis of Lactococcal phages Q33 and BM13. Appl Environ Microbiol 79(14):4401–4409

    Article  CAS  Google Scholar 

  • Murphy J, Mahony J, Ainsworth S, Nauta A, van Sinderen D (2013) Bacteriophage orphan DNA methyltransferases: insights from their bacterial origin, function, and occurrence. Appl Environ Microbiol 79(24):7547–7555

    Article  CAS  Google Scholar 

  • Ogata S, Eguchi T, Doi K (2000) Protection against bacteriophage contamination in industrial fermentation processes--investigation and applications of phage resistance mechanisms in bacteria. Uirusu 50(1):17–26

    Article  CAS  Google Scholar 

  • Priest FG (1992) Biological-control of mosquitos and other biting flies by Bacillus sphaericus and Bacillus thuringiensis. J Appl Bacteriol 72(5):357–369

    Article  CAS  Google Scholar 

  • Rabsch W (2007) Salmonella typhimurium phage typing for pathogens. Methods Mol Biol 394:177–211

    Article  CAS  Google Scholar 

  • Rasko DA, Ravel J, Okstad OA, Helgason E, Cer RZ, Jiang L, Shores KA, Fouts DE, Tourasse NJ, Angiuoli SV, Kolonay J, Nelson WC, Kolsto AB, Fraser CM, Read TD (2004) The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1. Nucleic Acids Res 32(3):977–988

    Article  CAS  Google Scholar 

  • Ripp RVM a SA (2002) Pseudolysogeny: a bacteriophage strategy for increasing longevity in situ. Horizontal Gene Transfer:81–91

  • Schuch R, Nelson D, Fischetti VA (2002) A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418(6900):884–889

    Article  CAS  Google Scholar 

  • Shaw DR, Dussan J (2018) Transcriptional analysis and molecular dynamics simulations reveal the mechanism of toxic metals removal and efflux pumps in Lysinibacillus sphaericus OT4b.31. Int Biodeterior Biodegr 127:46–61

    Article  CAS  Google Scholar 

  • Shin H, Bandara N, Shin E, Ryu S, Kim KP (2011) Prevalence of Bacillus cereus bacteriophages in fermented foods and characterization of phage JBP901. Res Microbiol 162(1016):791–797

    Article  CAS  Google Scholar 

  • Sicard N, Venema G (1969) Penetration of thymine-starved bacterial DNA during transformation of B. Subtilis 168 T. Biochem Biophy Res Commun 36(4):647–650

    Article  CAS  Google Scholar 

  • Szymczak P, Janzen T, Neves AR, Kot W, Hansen LH, Lametsch R, Neve H, Franz CMAP, Vogensen FK (2017) Novel variants of Streptococcus thermophilus bacteriophages are indicative of genetic recombination among phages from different bacterial species. Appl Environ Microbiol 83(5)

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  Google Scholar 

  • Taylor LD, Burke WF (1990) Transformation of an entomopathic strain of Bacillus sphaericus by high-voltage electroporation. FEMS Microbiol Lett 66(1–3):125–127

    Article  CAS  Google Scholar 

  • Thiéry I, Back C, Barbazan P, Sinègre G (1996) Applications de Bacillus thuringiensis et de B sphaericus dans la démoustication et la lutte contre les vecteurs de maladies tropicales

  • Tsourkas PK, Yost DG, Krohn A, LeBlanc L, Zhang A, Stamereilers C, Amy PS (2015) Complete genome sequences of nine phages capable of infecting Paenibacillus larvae, the causative agent of American foulbrood disease in honeybees. Genome Announc 3(5)

  • van Zyl LJ, Sunda F, Taylor MP, Cowan DA, Trindade MI (2015) Identification and characterization of a novel Geobacillus thermoglucosidasius bacteriophage, GVE3. Arch Virol 160(9):2269–2282

    Article  Google Scholar 

  • Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28(2):127–181

    Article  CAS  Google Scholar 

  • Wu DD, Yuan YH, Liu PM, Wu Y, Gao MY (2014) Cellular responses in Bacillus thuringiensis CS33 during bacteriophage BtCS33 infection. J Proteome 101:192–204

    Article  CAS  Google Scholar 

  • Xu K, Yuan ZM, Rayner S, Hu XM (2015) Genome comparison provides molecular insights into the phylogeny of the reassigned new genus Lysinibacillus. BMC Genomics 16:140

    Article  Google Scholar 

  • Yousten AA, de Barjac H, Hedrick J, Cosmao Dumanoir V, Myers P (1980) Comparison between bacteriophage typing and serotyping for the differentiation of Bacillus sphaericus strains. Ann Microbiol (Paris) 131B(3):297–308

    CAS  Google Scholar 

  • Yuan ZM, Zhang YM, Cai QX, Liu EY (2000) High-level field resistance to Bacillus sphaericus C3-41 in Culex quinquefasciatus from southern China. Biocontrol Sci Tech 10(1):41–49

    Article  Google Scholar 

  • Yuan YH, Peng Q, Wu DD, Kou Z, Wu Y, Liu PM, Gao MY (2015) Effects of actin-like proteins encoded by two Bacillus pumilus phages on unstable lysogeny, revealed by genomic analysis. Appl Environ Microbiol 81(1):339–350

    Article  Google Scholar 

  • Zahiri NS, Mulla MS (2005) Non-larvicidal effects of Bacillus thuringiensis israelensis and Bacillus sphaericus on oviposition and adult mortality of Culex quinquefasciatus Say (Diptera : Culicidae). J Vector Ecol 30(1):155–162

    PubMed  Google Scholar 

  • Zhang YM (1987) Isolation of two highly toxic Bacillus sphaericus strains. Insecticidal Microorg 1:98–99

    Google Scholar 

Download references

Acknowledgments

We would like to thank Pei Zhang from the Core Facility and Technical Support, Wuhan Institute of Virology, for her help with producing EM micrographs.

Funding

This study was funded by the National Key R&D Programs of China (2016YFC1201000) and the National Natural Science Foundation of China (grant 31570007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiming Yuan or Xiaomin Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 878 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, P., Wan, X., Cheng, J. et al. vB_LspM-01: a novel myovirus displaying pseudolysogeny in Lysinibacillus sphaericus C3-41. Appl Microbiol Biotechnol 102, 10691–10702 (2018). https://doi.org/10.1007/s00253-018-9424-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9424-4

Keywords

Navigation