Skip to main content
Log in

Critical steps in carbon metabolism affecting lipid accumulation and their regulation in oleaginous microorganisms

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Oleaginous microorganisms are able to convert numerous agro-industrial and municipal wastes into storage lipids (single cell oil (SCO)) and are therefore considered as potential biofuel producers. While from an environmental and technological point of view the idea to convert waste materials into fuels is very attractive, the production cost of SCO is not currently competitive to that of conventional oils due to the low productivity of oleaginous microorganisms in combination with the high fermentation cost. Current strategies used to optimize the lipid-accumulating capacity of oleaginous microorganisms include the overexpression of genes encoding for key enzymes implicated in fatty acid and triacylglycerol synthesis, such as ATP-dependent citrate lyase, acetyl-CoA carboxylase, malic enzyme, proteins of the fatty acid synthase complex, glycerol 3-phosphate dehydrogenase and various acyltransferases, and/or the inactivation of genes encoding for enzymes implicated in storage lipid catabolism, such as lipases and acyl-CoA oxidases. Furthermore, blocking, even partially, pathways competitive to lipid biosynthesis (e.g., those involved in the accumulation of storage polysaccharide or organic acid and polyol excretion) can also increase lipid-accumulating ability in oleaginous microorganisms. Methodologies, such as adaptive laboratory evolution, can be included in existing workflows for the generation of strains with improved lipid accumulation capacity. In our opinion, efforts should be focused in the construction of strains with high carbon uptake rates and a reprogrammed coordination of the individual parts of the oleaginous machinery that maximizes carbon flux towards lipogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aggelis G, Komaitis M, Papanikolaou S, Papadopoulos G, Papadopoulos G (1995) A mathematical model for the study of lipid accumulation in oleaginous microorganisms. I. Lipid accumulation during growth of Mucor circinelloides CBS 172-27 on a vegetable oil. Grasas Aceites 46:169–1873

    Article  CAS  Google Scholar 

  • Aguilar LR, Pardo JP, Lomelí MM, Bocardo OIL, Juárez Oropeza MA, Guerra Sánchez G (2017) Lipid droplets accumulation and other biochemical changes induced in the fungal pathogen Ustilago maydis under nitrogen-starvation. Arch Microbiol 199:1195–1209

    Article  CAS  PubMed  Google Scholar 

  • Almario MP, Reyes LH, Kao KC (2013) Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass. Biotechnol Bioeng 110:2616–2623

    Article  CAS  PubMed  Google Scholar 

  • Alvarez HM, Steinbüchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376

    Article  CAS  PubMed  Google Scholar 

  • Alvarez HM, Mayer F, Fabritius D, Steinbüchel A (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165:377–386

    Article  CAS  PubMed  Google Scholar 

  • Alvarez HM, Kalscheuer R, Steinbüchel A (2000) Accumulation and mobilization of storage lipids by Rhodococcus opacus PD630 and Rhodococcus ruber NCIMB 40126. Appl Microbiol Biotechnol 54:218–223

    Article  CAS  PubMed  Google Scholar 

  • André A, Chatzifragkou A, Diamantopoulou P, Sarris D, Philippoussis A, Galiotou-Panayotou M, Komaitis M, Papanikolaou S (2009) Biotechnological conversions of bio-dieselderived crude glycerol by Yarrowia lipolytica strains. Eng Life Sci 9:468–478

    Article  CAS  Google Scholar 

  • André A, Diamantopoulou P, Philippoussis A, Sarris D, Komaitis M, Papanikolaou S (2010) Biotechnological conversions of bio-diesel derived waste glycerol into added-value compounds by higher fungi: Production of biomass, single cell oil and oxalic acid. Ind Crop Prod 31:407–416

    Article  CAS  Google Scholar 

  • Arous F, Mechichi T, Nasri M, Aggelis G (2016) Fatty acid biosynthesis during the life cycle of Debaryomyces etchellsii. Microbiology (United Kingdom) 162:1080–1090

    CAS  Google Scholar 

  • Arous F, Atitallah IB, Nasri M, Mechichi T (2017a) A sustainable use of low-cost raw substrates for biodiesel production by the oleaginous yeast Wickerhamomyces anomalus. 3 Biotech 7:268

    Article  PubMed  Google Scholar 

  • Arous F, Azabou S, Triantaphyllidou IE, Aggelis G, Jaouani A, Nasri M, Mechichi T (2017b) Newly isolated yeasts from Tunisian microhabitats: Lipid accumulation and fatty acid composition. Eng Life Sci 17:226–236

    Article  CAS  Google Scholar 

  • Barrero AF, Enrique Oltra J, Robinson J, Burke PV, Jimenez D, Oliver E (2002) Sterols in erg mutants of Phycomyces: Metabolic pathways and physiological effects. Steroids 67:403–409

    Article  CAS  PubMed  Google Scholar 

  • Bellou S, Aggelis G (2012) Biochemical activities in Chlorella sp. and Nannochloropsis salina during lipid and sugar synthesis in a lab-scale open pond simulating reactor. J Biotechnol 164:318–329

    Article  CAS  PubMed  Google Scholar 

  • Bellou S, Baeshen MN, Elazzazy AM, Aggeli D, Sayegh F, Aggelis G (2014a) Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol Adv 32:1476–1493

    Article  CAS  PubMed  Google Scholar 

  • Bellou S, Makri A, Sarris D, Michos K, Rentoumi P, Celik A, Papanikolaou S, Aggelis G (2014b) The olive mill wastewater as substrate for single cell oil production by Zygomycetes. J Biotechnol 170:50–59

    Article  CAS  PubMed  Google Scholar 

  • Bellou S, Makri A, Triantaphyllidou IE, Papanikolaou S, Aggelis G (2014c) Morphological and metabolic shifts of Yarrowia lipolytica induced by alteration of the dissolved oxygen concentration in the growth environment. Microbiology 160:807–817

    Article  CAS  PubMed  Google Scholar 

  • Bellou S, Triantaphyllidou IE, Aggeli D, Elazzazy AM, Baeshen MN, Aggelis G (2016a) Microbial oils as food additives: Recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Curr Opin Biotechnol 37:24–35

    Article  CAS  PubMed  Google Scholar 

  • Bellou S, Triantaphyllidou IE, Mizerakis P, Aggelis G (2016b) High lipid accumulation in Yarrowia lipolytica cultivated under double limitation of nitrogen and magnesium. J Biotechnol 234:116–126

    Article  CAS  PubMed  Google Scholar 

  • Beopoulos A, Mrozova Z, Thevenieau F, Le Dall MT, Hapala I, Papanikolaou S, Chardot T, Nicaud JM (2008) Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ Microbiol 74:7779–7789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48:375–387

    Article  CAS  PubMed  Google Scholar 

  • Beopoulos A, Nicaud JM, Gaillardin C (2011) An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Appl Microbiol Biotechnol 90:1193–1206

    Article  CAS  PubMed  Google Scholar 

  • Besada-Lombana PB, Fernandez-Moya R, Fenster J, Da Silva NA (2017) Engineering Saccharomyces cerevisiae fatty acid composition for increased tolerance to octanoic acid. Biotechnol Bioeng 114:1531–1538

    Article  CAS  PubMed  Google Scholar 

  • Bhutada G, Kavšček M, Ledesma-Amaro R, Thomas S, Rechberger GN, Nicaud JM, Natter K (2017) Sugar versus fat: Elimination of glycogen storage improves lipid accumulation in Yarrowia lipolytica. FEMS Yeast Res:1–10

  • Blatti JL, Michaud J, Burkart MD (2013) Engineering fatty acid biosynthesis in microalgae for sustainable biodiesel. Curr Opin Chem Biol 17:496–505

    Article  CAS  PubMed  Google Scholar 

  • Blazeck J, Hill A, Liu L, Knight R, Miller J, Pan A, Otoupal P, Alper HS (2014) Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat Commun 5:1–10

    Article  CAS  Google Scholar 

  • Bommareddy RR, Sabra W, Maheshwari G, Zeng AP (2015) Metabolic network analysis and experimental study of lipid production in Rhodosporidium toruloides grown on single and mixed substrates. Microb Cell Factories 14:36

    Article  CAS  Google Scholar 

  • Carman GM, Han GS (2009) Phosphatidic acid phosphatase, a key enzyme in the regulation of lipid synthesis. J Biol Chem 284:2593–2597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Čertík M, Adamechová Z, Guothová L (2013) Simultaneous enrichment of cereals with polyunsaturated fatty acids and pigments by fungal solid state fermentations. J Biotechnol 168:130–134

    Article  PubMed  CAS  Google Scholar 

  • Chatzifragkou A, Makri A, Belka A, Bellou S, Mavrou M, Mastoridou M, Mystrioti P, Onjaro G, Aggelis G, Papanikolaou S (2011) Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy 36:1097–1108

    Article  CAS  Google Scholar 

  • Chou HH, Chiu HC, Delaney NF, Segre D, Marx CJ (2011) Diminishing returns epistasis among beneficial mutations decelerates adaptation. Science 332:1190–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuang LT, Chen DC, Nicaud JM, Madzak C, Chen YH, Huang YS (2010) Co-expression of heterologous desaturase genes in Yarrowia lipolytica. New Biotechnol 27:277–282

    Article  CAS  Google Scholar 

  • Cronan JE, Thomas J (2009) Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways. Methods Enzymol 459:395–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damude HG, Gillies PJ, Macool DJ, Picataggio SK, Ragghianti JJ, Seip JE, Xue Z, Yadav NS, Zhang H, Zhu QQ (2014) Docosahexaenoic acid producing strains of Yarrowia lipolytica. US Patent No 8,685,682

  • Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88:3524–3531

    Article  Google Scholar 

  • de Paula FC, de Paula CBC, Gomez JGC, Steinbüchel A, Contiero J (2017) Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production from biodiesel by-product and propionic acid by mutant strains of Pandoraea sp. Biotechnol Prog 33:1077–1084

    Article  PubMed  CAS  Google Scholar 

  • Deatherage DE, Kepner JL, Bennett AF, Lenski RE, Barrick JE (2017) Specificity of genome evolution in experimental populations of Escherichia coli evolved at different temperatures. Proc Natl Acad Sci 114:1904–1912

    Article  CAS  Google Scholar 

  • Diamantopoulou P, Papanikolaou S, Katsarou E, Komaitis M, Aggelis G, Philippoussis A (2012) Mushroom polysaccharides and lipids synthesized in liquid agitated and static cultures. Part II: Study of Volvariella volvacea. Appl Biochem Biotechnol 167:1890–1906

    Article  CAS  PubMed  Google Scholar 

  • Diamantopoulou P, Papanikolaou S, Komaitis M, Aggelis G, Philippoussis A (2014) Patterns of major metabolites biosynthesis by different mushroom fungi grown on glucose-based submerged cultures. Bioprocess Biosyst Eng 37:1385–1400

    Article  CAS  PubMed  Google Scholar 

  • Diamantopoulou P, Papanikolaou S, Aggelis G, Philippoussis A (2016) Adaptation of Volvariella volvacea metabolism in high carbon to nitrogen ratio media. Food Chem 196:272–280

    Article  CAS  PubMed  Google Scholar 

  • Dobrowolski A, Mituła P, Rymowicz W, Mirończuk AM (2016) Efficient conversion of crude glycerol from various industrial wastes into single cell oil by yeast Yarrowia lipolytica. Bioresour Technol 207:237–243

    Article  CAS  PubMed  Google Scholar 

  • Dourou M, Kancelista A, Juszczyk P, Sarris D, Bellou S, Triantaphyllidou I, Rywinska A, Papanikolaou S, Aggelis G (2016) Bioconversion of olive mill wastewater into high-added value products. J Clean Prod 139:957–969

    Article  CAS  Google Scholar 

  • Dourou M, Mizerakis P, Papanikolaou S, Aggelis G (2017) Storage lipid and polysaccharide metabolism in Yarrowia lipolytica and Umbelopsis isabellina. Appl Microbiol Biotechnol 101:7213–7226

    Article  CAS  PubMed  Google Scholar 

  • Dragosits M, Mattanovich D (2013) Adaptive laboratory evolution—Principles and applications for biotechnology. Microb Cell Factories 12:64

    Article  Google Scholar 

  • Driver T, Trivedi DK, McIntosh OA, Dean AP, Goodacre R, Pittman JK (2017) Two glycerol-3-phosphate dehydrogenases from Chlamydomonas have distinct roles in lipid metabolism. Plant Physiol 174:2083–2097

    Article  CAS  PubMed  Google Scholar 

  • Dulermo T, Nicaud JM (2011) Involvement of the G3P shuttle and β-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica. Metab Eng 13:482–491

    Article  CAS  PubMed  Google Scholar 

  • Dulermo T, Lazar Z, Dulermo R, Rakicka M (2015) Analysis of ATP-citrate lyase and malic enzyme mutants of Yarrowia lipolytica points out the importance of mannitol metabolism in fatty acid synthesis. BBA - Mol Cell Biol Lipids 1851:1107–1117

    Article  CAS  Google Scholar 

  • Dunahay TG, Jarvis EE, Dais SS, Roessler PG (1996) Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotechnol 57–8:223–231

    Article  Google Scholar 

  • Easterling ER, French WT, Hernandez R, Licha M (2009) The effect of glycerol as a sole and secondary substrate on the growth and fatty acid composition of Rhodotorula glutinis. Bioresour Technol 100:356–361

    Article  CAS  PubMed  Google Scholar 

  • Economou CN, Makri A, Aggelis G, Pavlou S, Vayenas DV (2010) Semi-solid state fermentation of sweet sorghum for the biotechnological production of single cell oil. Bioresour Technol 101:1385–1388

    Article  CAS  PubMed  Google Scholar 

  • Economou CN, Aggelis G, Pavlou S, Vayenas DV (2011) Single cell oil production from rice hulls hydrolysate. Bioresour Technol 102:9737–9742

    Article  CAS  PubMed  Google Scholar 

  • Fakas S (2017) Lipid biosynthesis in yeasts: A comparison of the lipid biosynthetic pathway between the model nonoleaginous yeast Saccharomyces cerevisiae and the model oleaginous yeast Yarrowia lipolytica. Eng Life Sci 17:292–302

    Article  CAS  Google Scholar 

  • Fakas S, Papanikolaou S, Galiotou-Panayotou M, Komaitis M, Aggelis G (2006) Lipids of Cunninghamella echinulata with emphasis to γ-linolenic acid distribution among lipid classes. Appl Microbiol Biotechnol 73:676–683

    Article  CAS  PubMed  Google Scholar 

  • Fakas S, Papanikolaou S, Galiotou-Panayotou M, Komaitis M, Aggelis G (2008) Organic nitrogen of tomato waste hydrolysate enhances glucose uptake and lipid accumulation in Cunninghamella echinulata. J Appl Microbiol 105:1062–1070

    Article  CAS  PubMed  Google Scholar 

  • Fakas S, Makri A, Mavromati M, Tselepi M, Aggelis G (2009) Fatty acid composition in lipid fractions lengthwise the mycelium of Mortierella isabellina and lipid production by solid state fermentation. Bioresour Technol 100:6118–6120

    Article  CAS  PubMed  Google Scholar 

  • Fillet S, Ronchel C, Callejo C, Fajardo M, Moralejo H, Adrio JL (2017) Engineering Rhodosporidium toruloides for the production of very long-chain monounsaturated fatty acid-rich oils. Appl Microbiol Biotechnol 101:7271–7280

    Article  CAS  PubMed  Google Scholar 

  • Friedlander J, Tsakraklides V, Kamineni A, Greenhagen EH, Consiglio AL, Macewen K, Crabtree DV, Afshar J, Nugent RL, Hamilton MA, Shaw AJ, South CR, Stephanopoulos G, Brevnova EE (2016) Engineering of a high lipid producing Yarrowia lipolytica strain. Biotechnol Biofuels 9:77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gajdoš P, Nicaud JM, Rossignol T, Čertik M (2015) Single cell oil production on molasses by Yarrowia lipolytica strains overexpressing DGA2 in multicopy. Appl Microbiol Biotechnol 99:8065–8074

    Article  PubMed  CAS  Google Scholar 

  • Gajdoš P, Ledesma-Amaro R, Nicaud JM, Čertík M, Rossignol T (2016) Overexpression of diacylglycerol acyltransferase in Yarrowia lipolytica affects lipid body size, number and distribution. FEMS Yeast Res 16:1–8

    Article  CAS  Google Scholar 

  • Gajdoš P, Nicaud JM, Čertík M (2017) Glycerol conversion into a single cell oil by engineered Yarrowia lipolytica. Eng Life Sci 17:325–332

    Article  CAS  Google Scholar 

  • Gardeli C, Athenaki M, Xenopoulos E, Mallouchos A, Koutinas AA, Aggelis G, Papanikolaou S (2017) Lipid production and characterization by Mortierella (Umbelopsis) isabellina cultivated on lignocellulosic sugars. J Appl Microbiol 123:1461–1477

    Article  CAS  PubMed  Google Scholar 

  • Gema H, Kavadia A, Dimou D, Tsagou V, Komaitis M, Aggelis G (2002) Production of γ-linolenic acid by Cunninghamella echinulata cultivated on glucose and orange peel. Appl Microbiol Biotechnol 58:303–307

    Article  CAS  PubMed  Google Scholar 

  • Gerstein AC, Lo DS, Otto SP (2012) Parallel genetic changes and nonparallel gene-environment interactions characterize the evolution of drug resistance in yeast. Genetics 192:241–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonçalves FAG, Colen G, Takahashi JA (2014) Yarrowia lipolytica and its multiple applications in the biotechnological industry. Sci World J 2014:14. https://doi.org/10.1155/2014/476207

  • Gong Z, Nielsen J, Zhou YJ (2017) Engineering robustness of microbial cell factories. Biotechnol J 12:1700014

    Article  CAS  Google Scholar 

  • Greer MS, Truksa M, Deng W, Lung SC, Chen G, Weselake RJ (2015) Engineering increased triacylglycerol accumulation in Saccharomyces cerevisiae using a modified type 1 plant diacylglycerol acyltransferase. Appl Microbiol Biotechnol 99:2243–2253

    Article  CAS  PubMed  Google Scholar 

  • Hamilton ML, Haslam RP, Napier JA, Sayanova O (2014) Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids. Metab Eng 22:3–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardman D, McFalls D, Fakas S (2017) Characterization of phosphatidic acid phosphatase activity in the oleaginous yeast Yarrowia lipolytica and its role in lipid biosynthesis. Yeast 34:83–91

  • Horinouchi T, Sakai A, Kotani H, Tanabe K, Furusawa C (2017) Improvement of isopropanol tolerance of Escherichia coli using adaptive laboratory evolution and omics technologies. J Biotechnol 255:47–56

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim MHA, Steinbüchel A (2009) Poly(3-hydroxybutyrate) production from glycerol by Zobellella denitrificans MW1 via high-cell-density fed-batch fermentation and simplified solvent extraction. Appl Environ Microbiol 75:6222–6231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janßen HJ, Steinbüchel A (2014) Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. Biotechnol Biofuels 7:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Janßen H, Ibrahim MHA, Bröker D, Steinbüchel A (2013) Optimization of macroelement concentrations, pH and osmolarity for triacylglycerol accumulation in Rhodococcus opacus strain PD630. AMB Express 3:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jensen-Pergakes K, Guo Z, Giattina M, Sturley SL, Bard M (2001) Transcriptional regulation of the two sterol esterification genes in the yeast Saccharomyces cerevisiae. J Bacteriol 183:4950–4957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin T, Chen Y, Jarboe LR (2016) Chapter 10-Evolutionary methods for improving the production of biorenewable fuels and chemicals. In: Eckert CA, Trinh CT (eds) Biotechnology for Biofuel Production and Optimization. Amsterdam, pp 265–290

  • Kacar B, Ge X, Sanyal S, Gaucher EA (2017) Experimental evolution of Escherichia coli harboring an ancient translation protein. J Mol Evol 84:69–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalscheuer R, Sto T, Steinbüchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiol (United Kingdom) 152:2529–2536

    CAS  Google Scholar 

  • Kamisaka Y, Kimura K, Uemura H, Yamaoka M (2013) Overexpression of the active diacylglycerol acyltransferase variant transforms Saccharomyces cerevisiae into an oleaginous yeast. Appl Microbiol Biotechnol 97:7345–7355

    Article  CAS  PubMed  Google Scholar 

  • Karamerou EE, Theodoropoulos C, Webb C (2017) Evaluating feeding strategies for microbial oil production from glycerol by Rhodotorula glutinis. Eng Life Sci 17:314–324

    Article  CAS  Google Scholar 

  • Kavscek M, Bhutada G, Madl T, Natter K (2015) Optimization of lipid production with a genome-scale model of Yarrowia lipolytica. BMC Syst Biol 9:72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kendrick A, Ratledge C (1992) Desaturation of polyunsaturated fatty acids in Mucor circinelloides and the involvement of a novel membrane-bound malic enzyme. Eur J Biochem 209:667–673

    Article  CAS  PubMed  Google Scholar 

  • Kolouchová I, Maťátková O, Sigler K, Masák J, Řezanka T (2016) Lipid accumulation by oleaginous and non-oleaginous yeast strains in nitrogen and phosphate limitation. Folia Microbiol (Praha) 61:431–438

    Article  CAS  Google Scholar 

  • Koutinas AA, Chatzifragkou A, Kopsahelis N, Papanikolaou S, Kookos IK (2014) Design and techno-economic evaluation of microbial oil production as a renewable resource for biodiesel and oleochemical production. Fuel 116:566–577

    Article  CAS  Google Scholar 

  • Krienitz L, Wirth M (2006) The high content of polyunsaturated fatty acids in Nannochloropsis limnetica (Eustigmatophyceae) and its implication for food web interactions, freshwater aquaculture and biotechnology. Limnologica 36:204–210

    Article  CAS  Google Scholar 

  • Kryazhimskiy S, Rice DP, Jerison ER, Desai MM (2014) Global epistasis makes adaptation predictable despite sequence-level stochasticity. Science 344:1519–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kvitek DJ, Sherlock G (2013) Whole genome, whole population sequencing reveals that loss of signaling networks is the major adaptive strategy in a constant environment. PLoS Genet 9:e1003972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • La Russa M, Bogen C, Uhmeyer A, Doebbe A, Filippone E, Kruse O, Mussgnug JH (2012) Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii. J Biotechnol 162:13–20

    Article  PubMed  CAS  Google Scholar 

  • Lazar Z, Dulermo T, Neuvéglise C, Coq AC, Nicaud JM (2014) Hexokinase-a limiting factor in lipid production from fructose in Yarrowia lipolytica. Metab Eng 26:89–99

    Article  CAS  PubMed  Google Scholar 

  • Ledesma-Amaro R, Dulermo R, Niehus X, Nicaud JM (2016) Combining metabolic engineering and process optimization to improve production and secretion of fatty acids. Metab Eng 38:38–46

    Article  CAS  PubMed  Google Scholar 

  • Lei A, Chen H, Shen G, Hu Z, Chen L, Wang J (2012) Expression of fatty acid synthesis genes and fatty acid accumulation in Haematococcus pluvialis under different stressors. Biotechnol Biofuels 5:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80:749–756

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Han D, Hu G, Dauvillee D, Sommerfeld M, Ball S, Hu Q (2010) Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metab Eng 12:387–391

    Article  PubMed  CAS  Google Scholar 

  • Li M, Ou X, Yang X, Guo D, Qian X, Xing L, Li M (2011) Isolation of a novel C18-D9 polyunsaturated fatty acid specific elongase gene from DHA-producing Isochrysis galbana H29 and its use for the reconstitution of the alternative D8 pathway in Saccharomyces cerevisiae. Biotechnol Lett 33:1823–1830

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Sun H, Mo X, Li X, Xu B, Tian P (2013) Overexpression of malic enzyme (ME) of Mucor circinelloides improved lipid accumulation in engineered Rhodotorula glutinis. Appl Microbiol Biotechnol 97:4927–4936

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Sheng J, Curtiss R 3rd (2011) Fatty acid production in genetically modified cyanobacteria. Proc Natl Acad Sci USA 108:6899–6904

  • Lynch M, Ackerman MS, Gout J-F, Long H, Sung W, Thomas WK, Foster PL (2016) Genetic drift, selection and the evolution of the mutation rate. Nat Rev Genet 17:704–714

    Article  CAS  PubMed  Google Scholar 

  • Makri A, Fakas S, Aggelis G (2010) Metabolic activities of biotechnological interest in Yarrowia lipolytica grown on glycerol in repeated batch cultures. Bioresour Technol 101:2351–2358

    Article  CAS  PubMed  Google Scholar 

  • Matsakas L, Sterioti A, Rova U, Christakopoulos P (2014) Use of dried sweet sorghum for the efficient production of lipids by the yeast Lipomyces starkeyi CBS 1807. Ind Crop Prod 62:367–372

    Article  CAS  Google Scholar 

  • Mejanelle L, Lopez JF, Gunde-Cimerman N, Grimalt JO (2000) Sterols of melanized fungi from hypersaline environments. Org Geochem 31:1031–1040

    Article  CAS  Google Scholar 

  • Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34:1–5

    Article  CAS  Google Scholar 

  • Meng Q, Zhang T, Wei W, Mu W, Miao M (2017) Production of mannitol from a high concentration of glucose by Candida parapsilosis SK26.001. Appl Biochem Biotechnol 181:391–406

    Article  CAS  PubMed  Google Scholar 

  • Mercer EI (1984) The biosynthesis of ergosterol. Pestic Sci 15:133–155

    Article  CAS  Google Scholar 

  • Mlíčková K, Luo Y, D’Andrea S, Peč P, Chardot T, Nicaud JM (2004) Acyl-CoA oxidase, a key step for lipid accumulation in the yeast Yarrowia lipolytica. J Mol Catal B Enzym 28:81–85

    Article  CAS  Google Scholar 

  • Morgunov IG, Kamzolova SV (2015) Physiologo-biochemical characteristics of citrate-producing yeast Yarrowia lipolytica grown on glycerol-containing waste of biodiesel industry. Appl Microbiol Biotechnol 99:6443–6450

    Article  CAS  PubMed  Google Scholar 

  • Moustogianni A, Bellou S, Triantaphyllidou IE, Aggelis G (2015) Feasibility of raw glycerol conversion into single cell oil by zygomycetes under non-aseptic conditions. Biotechnol Bioeng 112:827–831

    Article  CAS  PubMed  Google Scholar 

  • Mühlroth A, Li K, Røkke G, Winge P, Olsen Y, Hohmann-Marriott MF, Vadstein O, Bones AM (2013) Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of Chromista. Mar Drugs 11:4662–4697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nahum JR, Godfrey-Smith P, Harding BN, Marcus JH, Carlson-Stevermer J, Kerr B (2015) A tortoise–hare pattern seen in adapting structured and unstructured populations suggests a rugged fitness landscape in bacteria. Proc Natl Acad Sci 112:7530–7535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nawabi P, Bauer S, Kyrpides N, Lykidis A (2011) Engineering Escherichia coli for biodiesel production utilizing a bacterial fatty acid methyltransferase. Appl Environ Microbiol 77:8052–8061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicol RW, Marchand K, Lubitz WD (2012) Bioconversion of crude glycerol by fungi. Appl Microbiol Biotechnol 93:1865–1875

    Article  CAS  PubMed  Google Scholar 

  • Niu YF, Zhang MH, Li DW, Yang WD, Liu JS, Bai WB, Li HY (2013) Improvement of neutral lipid and polyunsaturated fatty acid biosynthesis by overexpressing a type 2 diacylglycerol acyltransferase in marine diatom Phaeodactylum tricornutum. Mar Drugs 11:4558–4569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papanikolaou S, Aggelis G (2002) Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single stage continuous culture. Bioresour Technol 82:43–49

    Article  CAS  PubMed  Google Scholar 

  • Papanikolaou S, Aggelis G (2003) Modeling lipid accumulation and degradation in Yarrowia lipolytica cultivated on industrial aats. Curr Microbiol 46:398–402

    Article  CAS  PubMed  Google Scholar 

  • Papanikolaou S, Aggelis G (2009) Biotechnological valorization of biodiesel derived glycerol waste through production of single cell oil and citric acid by Yarrowia lipolytica. Lipid Technol 21:83–87

    Article  CAS  Google Scholar 

  • Papanikolaou S, Aggelis G (2010) Yarrowia lipolytica: A model microorganism used for the production of tailor-made lipids. Eur J Lipid Sci Technol 112:639–654

    Article  CAS  Google Scholar 

  • Papanikolaou S, Aggelis G (2011a) Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production. Eur J Lipid Sci Technol 113:1031–1051

    Article  CAS  Google Scholar 

  • Papanikolaou S, Aggelis G (2011b) Lipids of oleaginous yeasts. Part II: Technology and potential applications. Eur J Lipid Sci Technol 113:1052–1073

    Article  CAS  Google Scholar 

  • Papanikolaou S, Komaitis M, Aggelis G (2004a) Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresour Technol 95:287–291

    Article  CAS  PubMed  Google Scholar 

  • Papanikolaou S, Sarantou S, Komaitis M, Aggelis G (2004b) Repression of reserve lipid turnover in Cunninghamella echinulata and Mortierella isabellina cultivated in multiple-limited media. J Appl Microbiol 97:867–875

    Article  CAS  PubMed  Google Scholar 

  • Papanikolaou S, Galiotou-Panayotou M, Fakas S, Komaitis M, Aggelis G (2008) Citric acid production by Yarrowia lipolytica cultivated on olive-mill wastewater-based media. Bioresour Technol 99:2419–2428

    Article  CAS  PubMed  Google Scholar 

  • Papanikolaou S, Chatzifragkou A, Fakas S, Galiotou-Panayotou M, Komaitis M, Nicaud JM, Aggelis G (2009) Biosynthesis of lipids and organic acids by Yarrowia lipolytica strains cultivated on glucose. Eur J Lipid Sci Technol 111:1221–1232

    Article  CAS  Google Scholar 

  • Papanikolaou S, Kampisopoulou E, Blanchard F, Rondags E, Gardeli C, Koutinas AA, Chevalot I, Aggelis G (2017a) Production of secondary metabolites through glycerol fermentation under carbon-excess conditions by the yeasts Yarrowia lipolytica and Rhodosporidium toruloides. Eur J Lipid Sci Technol 119:n/a, 1600507. https://doi.org/10.1002/ejlt.201600507

  • Papanikolaou S, Rontou M, Belka A, Athenaki M, Gardeli C, Mallouchos A, Kalantzi O, Koutinas AA, Kookos IK, Zeng AP, Aggelis G (2017b) Conversion of biodiesel-derived glycerol into biotechnological products of industrial significance by yeast and fungal strains. Eng Life Sci 17:262–281

    Article  CAS  Google Scholar 

  • Park Y, Han GS, Mileykovskaya E, Garrett TA, Carman GM (2015) Altered lipid synthesis by lack of yeast Pah1 phosphatidate phosphatase reduces chronological life span. J Biol Chem 290:25382–25394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park YC, Oh EJ, Jo JH, Jin YS, Seo JH (2016) Recent advances in biological production of sugar alcohols. Curr Opin Biotechnol 37:105–113

    Article  CAS  PubMed  Google Scholar 

  • Pascual F, Carman GM (2013) Phosphatidate phosphatase, a key regulator of lipid homeostasis. Biochim Biophys Acta - Mol Cell Biol Lipids 1831:514–522

    Article  CAS  Google Scholar 

  • Patterson GW (1969) Sterols of Chlorella. III. Species containing ergosterol. Comp Biochem Physiol 31:391–394

    Article  CAS  Google Scholar 

  • Peng KT, Zheng CN, Xue J, Chen XY, Yang WD, Liu JS, Bai W, Li HY (2014) Delta 5 fatty acid desaturase upregulates the synthesis of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum. J Agric Food Chem 62:8773–8776

    Article  CAS  PubMed  Google Scholar 

  • Poblete-Castro I, Binger D, Oehlert R, Rohde M (2014) Comparison of mcl-poly(3-hydroxyalkanoates) synthesis by different Pseudomonas putida strains from crude glycerol: Citrate accumulates at high titer under PHA-producing conditions. BMC Biotechnol 14:962

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Priyadarshani I, Rath B (2012) Commercial and industrial applications of micro algae – A review. J Algal Biomass Util 3:89–100

    Google Scholar 

  • Qin L, Liu L, Zeng AP, Wei D (2017) From low-cost substrates to single cell oils synthesized by oleaginous yeasts. Bioresour Technol 245:1507–1519

    Article  CAS  PubMed  Google Scholar 

  • Rakicka M, Lazar Z, Rywińska A, Rymowicz W (2016) Efficient utilization of inulin and glycerol as fermentation substrates in erythritol and citric acid production using Yarrowia lipolytica expressing inulinase. Chem Pap 70:1452–1459

    Article  CAS  Google Scholar 

  • Rakicka M, Rywińska A, Lazar Z, Rymowicz W (2017) Two-stage continuous culture – Technology boosting erythritol production. J Clean Prod 168:420–427

    Article  CAS  Google Scholar 

  • Ramazanov A, Ramazanov Z (2006) Isolation and characterization of a starchless mutant of Chlorella pyrenoidosa STL-PI with a high growth rate, and high protein and polyunsaturated fatty acid content. Phycol Res 54:255–259

    Article  CAS  Google Scholar 

  • Ratledge C (2013) Microbial oils: An introductory overview of current status and future prospects. Ocl 20:D602

    Article  Google Scholar 

  • Ratledge C (2014) The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: A reappraisal and unsolved problems. Biotechnol Lett 36:1557–1568

    Article  CAS  PubMed  Google Scholar 

  • Ratledge C, Cohen Z (2008) Microbial and algal oils: Do they have a future for biodiesel or as commodity oils? Lipid Technol 20:155–160

    Article  Google Scholar 

  • Ratledge C, Wilkinson SG (1988) Microbial lipids, vol 1. Academic Press, Cambridge

    Google Scholar 

  • Ratledge C, Wynn JP (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–51

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Frómeta RA, Gutiérrez A, Torres-Martínez S, Garre V (2013) Malic enzyme activity is not the only bottleneck for lipid accumulation in the oleaginous fungus Mucor circinelloides. Appl Microbiol Biotechnol 97:3063–3072

    Article  PubMed  CAS  Google Scholar 

  • Röttig A, Hauschild P, Madkour MH, Al-Ansari AM, Almakishah NH, Steinbüchel A (2016) Analysis and optimization of triacylglycerol synthesis in novel oleaginous Rhodococcus and Streptomyces strains isolated from desert soil. J Biotechnol 225:48–56

    Article  PubMed  CAS  Google Scholar 

  • Ruan Z, Zanotti M, Zhong Y, Liao W, Ducey C, Liu Y (2013) Co-hydrolysis of lignocellulosic biomass for microbial lipid accumulation. Biotechnol Bioeng 110:1039–1049

    Article  CAS  PubMed  Google Scholar 

  • Ruan Z, Zanotti M, Archer S, Liao W, Liu Y (2014) Oleaginous fungal lipid fermentation on combined acid- and alkali-pretreated corn stover hydrolysate for advanced biofuel production. Bioresour Technol 163:12–17

    Article  CAS  PubMed  Google Scholar 

  • Runguphan W, Keasling JD (2014) Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab Eng 21:103–113

    Article  CAS  PubMed  Google Scholar 

  • Safdar W, Shamoon M, Zan X, Haider J, Sharif HR, Shoaib M, Song Y (2017) Growth kinetics, fatty acid composition and metabolic activity changes of Crypthecodinium cohnii under different nitrogen source and concentration. AMB Express 7:85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sagnak R, Cochot S, Molina-Jouve C, Nicaud JM, Guillouet SE (2018) Modulation of the glycerol phosphate availability led to concomitant reduction in the citric acid excretion and increase in lipid content and yield in Yarrowia lipolytica. J Biotechnol 265:40–45

    Article  CAS  PubMed  Google Scholar 

  • Sandberg TE, Lloyd CJ, Palsson BO, Feist AM (2017) Laboratory evolution to alternating substrate environments yields distinct phenotypic and genetic adaptive strategies. Appl Environ Microbiol 83:e00410–e00417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarris D, Galiotou-Panayotou M, Koutinas AA, Komaitis M, Papanikolaou S (2011) Citric acid, biomass and cellular lipid production by Yarrowia lipolytica strains cultivated on olive mill wastewater-based media. J Chem Technol Biotechnol 86:1439–1448

    Article  CAS  Google Scholar 

  • Sarris D, Stoforos NG, Mallouchos A, Kookos IK, Koutinas AA, Aggelis G, Papanikolaou S (2017) Production of added-value metabolites by Yarrowia lipolytica growing in olive mill wastewater-based media under aseptic and non-aseptic conditions. Eng Life Sci 17:695–709

    Article  CAS  Google Scholar 

  • Seip J, Jackson R, He H, Zhu Q, Hong SP (2013) Snf1 is a regulator of lipid accumulation in Yarrowia lipolytica. Appl Environ Microbiol 79:7360–7370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen H, Zhang X, Gong Z, Wang Y, Yu X, Yang X, Zhao ZK (2017) Compositional profiles of Rhodosporidium toruloides cells under nutrient limitation. Appl Microbiol Biotechnol 101:3801–3809

    Article  CAS  PubMed  Google Scholar 

  • Sherkhanov S, Korman TP, Clarke SG, Bowie JU (2016) Production of FAME biodiesel in E. coli by direct methylation with an insect enzyme. Nat Publ Group 6:24239

    CAS  Google Scholar 

  • Shi S, Chen Y, Siewers V, Nielsen J (2014) Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1. MBio 5:1–8

    Article  CAS  Google Scholar 

  • Sorger D, Athenstaedt K, Hrastnik C, Daum G (2004) A yeast strain lacking lipid particles bears a defect in ergosterol formation. J Biol Chem 279:31190–31196

    Article  CAS  PubMed  Google Scholar 

  • Spaans SK, Weusthuis RA, van der Oost J, Kengen SWM (2015) NADPH-generating systems in bacteria and archaea. Front Microbiol 6:1–27

    Article  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A, De Génie L, Paris EC (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  • Steinbüchel A (1991) Polyhydroxyalkanoic acids. In: Byron D (ed) Biomaterials, Palgrave Macmillan, London, pp 123–213

  • Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228

    Article  Google Scholar 

  • Stodola FH, Deinema MH, Spencer JF (1967) Extracellular lipids of yeasts. Bacteriol Rev 31:194–213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun A, Davis R, Starbuck M, Ben-amotz A, Pate R, Pienkos PT (2011) Comparative cost analysis of algal oil production for biofuels. Energy 36:5169–5179

    Article  Google Scholar 

  • Tai M, Stephanopoulos G (2013) Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng 15:1–9

    Article  CAS  PubMed  Google Scholar 

  • Tamano K, Bruno KS, Karagiosis SA, Culley DE, Deng S, Collett JR, Umemura M, Koike H, Baker SE, Machida M (2013) Increased production of fatty acids and triglycerides in Aspergillus oryzae by enhancing expressions of fatty acid synthesis-related genes. Appl Microbiol Biotechnol 97:269–281

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Zhang S, Tan H, Zhao ZK (2010) Molecular cloning and characterization of a malic enzyme gene from the oleaginous yeast Lipomyces starkeyi. Mol Biotechnol 45:121–128

    Article  CAS  PubMed  Google Scholar 

  • Tavares S, Grotkjær T, Obsen T, Haslam RP, Napier JA, Gunnarsson N (2011) Metabolic engineering of Saccharomyces cerevisiae for production of eicosapentaenoic acid, using a novel D5-desaturase from Paramecium tetraurelia. Appl Environ Microbiol 77:1854–1861

    Article  CAS  PubMed  Google Scholar 

  • Tchakouteu SS, Chatzifragkou A, Kalantzi O, Koutinas AA, Aggelis G, Papanikolaou S (2015a) Oleaginous yeast Cryptococcus curvatus exhibits interplay between biosynthesis of intracellular sugars and lipids. Eur J Lipid Sci Technol 117:657–672

    Article  CAS  Google Scholar 

  • Tchakouteu SS, Kalantzi O, Gardeli C, Koutinas AA, Aggelis G, Papanikolaou S (2015b) Lipid production by yeasts growing on biodiesel-derived crude glycerol: Strain selection and impact of substrate concentration on the fermentation efficiency. J Appl Microbiol 118:911–927

    Article  CAS  PubMed  Google Scholar 

  • Tomaszewska L, Rywińska A, Gladkowski W (2012) Production of erythritol and mannitol by Yarrowia lipolytica yeast in media containing glycerol. J Ind Microbiol Biotechnol 39:1333–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomaszewska-Hetman L, Rywińska A (2016) Erythritol biosynthesis from glycerol by Yarrowia lipolytica yeast: Effect of osmotic pressure. Chem Pap 70:272–283

    Article  CAS  Google Scholar 

  • Tsakona S, Kopsahelis N, Chatzifragkou A, Papanikolaou S, Kookos IK, Koutinas AA (2014) Formulation of fermentation media from flour-rich waste streams for microbial lipid production by Lipomyces starkeyi. J Biotechnol 189:36–45

    Article  CAS  PubMed  Google Scholar 

  • Tsakona S, Skiadaresis AG, Kopsahelis N, Chatzifragkou A, Papanikolaou S, Kookos IK, Koutinas AA (2016) Valorisation of side streams from wheat milling and confectionery industries for consolidated production and extraction of microbial lipids. Food Chem 198:85–92

    Article  CAS  PubMed  Google Scholar 

  • Tsolcha ON, Tekerlekopoulou AG, Akratos CS, Bellou S, Aggelis G, Katsiapi M, Moustaka-gouni M, Vayenas DV (2015) Treatment of second cheese whey effluents using a Choricystis-based system with simultaneous lipid production. J Chem Technol Biotechnol 91:2349–2359

    Article  CAS  Google Scholar 

  • Vamvakaki AN, Kandarakis I, Kaminarides S, Komaitis M, Papanikolaou S (2010) Cheese whey as a renewable substrate for microbial lipid and biomass production by Zygomycetes. Eng Life Sci 10:348–360

    Article  CAS  Google Scholar 

  • Van Cleve J, Weissman DB (2015) Measuring ruggedness in fitness landscapes: Fig. 1. Proc Natl Acad Sci 112:7345–7346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Venkataram S, Dunn B, Li Y, Agarwala A, Chang J, Ebel ER, Geiler-Samerotte K, Hérissant L, Blundell JR, Levy SF, Fisher DS, Sherlock G, Petrov DA (2016) Development of a comprehensive genotype-to-fitness map of adaptation-driving mutations in yeast. Cell 166:1585–1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace-Salinas V, Gorwa-Grauslund MF (2013) Adaptive evolution of an industrial strain of Saccharomyces cerevisiae for combined tolerance to inhibitors and temperature. Biotechnol Biofuels 6:151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan N, DeLorenzo DM, He L, You L, Immethun CM, Wang G, Baidoo EEK, Hollinshead W, Keasling JD, Moon TS, Tang YJ (2017) Cyanobacterial carbon metabolism: Fluxome plasticity and oxygen dependence. Biotechnol Bioeng 114:1593–1602

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Xu H, Wang G, Chi Z, Chi Z (2013) Disruption of the MIG1 gene enhances lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica ACA-DC 50109. BBA - Mol Cell Biol Lipids 1831:675–682

    Article  CAS  Google Scholar 

  • Wang J, Xu R, Wang R, Haque ME, Liu A (2016) Overexpression of ACC gene from oleaginous yeast Lipomyces starkeyi enhanced the lipid accumulation in Saccharomyces cerevisiae with increased levels of glycerol 3-phosphate substrates. Biosci Biotechnol Biochem 80:1214–1222

    Article  CAS  PubMed  Google Scholar 

  • Wasylenko TM, Ahn WS, Stephanopoulos G (2015) The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose in Yarrowia lipolytica. Metab Eng 30:27–39

    Article  CAS  PubMed  Google Scholar 

  • Wenger JW, Piotrowski J, Nagarajan S, Chiotti K, Sherlock G, Rosenzweig F (2011) Hunger artists: Yeast adapted to carbon limitation show trade-offs under carbon sufficiency. PLoS Genet 7(8):e1002202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Work VH, Radakovits R, Jinkerson RE, Meuser JE, Elliott LG, Vinyard DJ, Laurens LML, Dismukes GC, Posewitz MC (2010) Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukariot Cell 9:1251–1261

    Article  CAS  Google Scholar 

  • Wu J, Zhang X, Xia X, Dong M (2017) A systematic optimization of medium chain fatty acid biosynthesis via the reverse beta-oxidation cycle in Escherichia coli. Metab Eng 41:115–124

    Article  PubMed  CAS  Google Scholar 

  • Wünsche A, Dinh DM, Satterwhite RS, Arenas CD, Stoebel DM, Cooper TF (2017) Diminishing-returns epistasis decreases adaptability along an evolutionary trajectory. Nat Ecol Evol 1:0061. https://doi.org/10.5061/dryad.7hh20/2

  • Wynn JP, Hamidt A, Ratledge C (1999) The role of malic enzyme in the regulation of lipid accumulation in filamentous fungi. Microbiology 145:1911–1917

    Article  CAS  PubMed  Google Scholar 

  • Xie D, Jackson EN, Zhu Q (2015) Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: From fundamental research to commercial production. Appl Microbiol Biotechnol 99:1599–1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue Z, Sharpe PL, Hong S, Yadav NS, Xie D, Short DR, Damude HG, Rupert RA, Seip JE, Wang J, Pollak DW, Bostick MW, Bosak MD, Macool DJ, Hollerbach DH, Zhang H, Arcilla DM, Bledsoe SA, Croker K, Mccord EF, Tyreus BD, Jackson EN, Zhu Q (2013) Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat Biotechnol 31:734–740

    Article  CAS  PubMed  Google Scholar 

  • Xue J, Niu YF, Huang T, Yang WD, Liu JS, Li HY (2015) Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation. Metab Eng 27:1–9

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Bard M, Bruner DA, Gleeson A, Deckelbaum RJ, Aljinovic G, Pohl TM, Rothstein R, Sturley SL (1996) Sterol esterification in yeast: A two-gene process. Science 272:1353–1356

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Hu X, Zhang H, Chen H, Kargbo MR, Zhao J, Song Y, Chen YQ, Zhang H, Chen W (2014) Expression, purification, and characterization of NADP+- dependent malic enzyme from the oleaginous fungus Mortierella alpina. Appl Biochem Biotechnol 173:1849–1857

    Article  CAS  PubMed  Google Scholar 

  • Yona AH, Manor YS, Herbst RH, Romano GH, Mitchell A, Kupiec M, Pilpel Y, Dahan O (2012) Chromosomal duplication is a transient evolutionary solution to stress. Proc Natl Acad Sci 109:21010–21015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu C, Kennedy NJ, Chang CCY, Rothblatt J (1996) Molecular cloning and characterization of two isoforms of Saccharomyces cerevisiae acyl-CoA:sterol acyltransferases. J Biol Chem 271:24157–24163

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Adams IP, Ratledge C (2007) Malic enzyme: The controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiol (United Kingdom) 153:2013–2025

    CAS  Google Scholar 

  • Zhang H, Zhang L, Chen H, Chen YQ, Ratledge C, Song Y, Chen W (2013) Regulatory properties of malic enzyme in the oleaginous yeast, Yarrowia lipolytica, and its non-involvement in lipid accumulation. Biotechnol Lett 35:2091–2098

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zhang L, Chen H, Chen YQ, Chen W, Song Y, Ratledge C (2014) Enhanced lipid accumulation in the yeast Yarrowia lipolytica by over-expression of ATP:citrate lyase from Mus musculus. J Biotechnol 192:78–84

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Skerker JM, Rutter CD, Maurer MJ, Arkin AP, Rao CV (2016) Engineering Rhodosporidium toruloides for increased lipid production. Biotechnol Bioeng 113:1056–1066

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Yang L, Ding Y, Wang Y, Lan L, Ma Q, Chi X, Wei P, Zhao Y, Steinbüchel A, Zhang H, Liu P (2017) Bacterial lipid droplets bind to DNA via an intermediary protein that enhances survival under stress. Nat Commun 8:15979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Z, Ding Y, Gong Z, Yang L, Zhang S, Zhang C, Lin X, Shen H, Zou H, Xie Z, Yang F, Zhao X, Liu P, Zhaoa ZK (2015) Dynamics of the lipid droplet proteome of the oleaginous yeast Rhodosporidium toruloides. Eukaryot Cell 14:252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Z, Zhou YJ, Krivoruchko A, Grininger M, Zhao ZK, Nielsen J (2017) Expanding the product portfolio of fungal type I fatty acid synthases. Nat Chem Biol 13:360–362

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We acknowledge support of this work by the project “INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management” (MIS 5002495) which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure,” funded by the Operational Programme “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014–2020) and co-financed by Greece and the European Union (European Regional Development Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Aggelis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dourou, M., Aggeli, D., Papanikolaou, S. et al. Critical steps in carbon metabolism affecting lipid accumulation and their regulation in oleaginous microorganisms. Appl Microbiol Biotechnol 102, 2509–2523 (2018). https://doi.org/10.1007/s00253-018-8813-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-8813-z

Keywords

Navigation