Skip to main content
Log in

Enhancement of neomycin production by engineering the entire biosynthetic gene cluster and feeding key precursors in Streptomyces fradiae CGMCC 4.576

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Neomycin, an aminoglycoside antibiotic, is widely used in the livestock husbandry due to its higher antimicrobial activity and availability of feed additives in animals. However, its production yield is relatively low and cannot meet the needs of developing market and clinical application. Here, the entire natural neo cluster was cloned from Streptomyces fradiae CGMCC 4.576 by φBT1 integrase-mediated site-specific recombination. Then, the rational reconstruction of the neo cluster was performed by using λ-Red-mediated PCR targeting for improving neomycin production. In order to coordinate with this attempt, the supplementation of suitable precursors was carried out. The constructed recombinant strain Sf/pKCZ03 has multi-copy of the neo cluster modified by disrupting the negative regulatory gene neoI and replacing the native promoter of the neoE-D with PkasO*. Compared to the yield (1282 mg/L) of Streptomyces fradiae CGMCC 4.576, the engineered strain Sf/pKCZ03 had a 36% enhancement of neomycin production. Quantitative real-time PCR analysis revealed the increased transcription of structural genes (neoE, neoB, neoL, aacC8) and regulatory genes (neoR, neoH) in Sf/pKCZ03. Additionally, under the supplementation of 1 g/L N-acetyl-D-glucosamine and 5 g/L L-glutamine, the yield of engineered strain Sf/pKCZ03 showed 62% and 107% improvements compared to that of the wild-type strain in the original medium, respectively. These findings demonstrated that engineering the antibiotic gene cluster in combination with precursors feeding was an effective approach for strain improvement, and would be potentially extended to other Streptomyces for large-scale production of commercialized antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Acknowledgments

We are grateful to Professor Yuhui Sun (School of Pharmaceutical Sciences, Wuhan University, China) for kindly providing the plasmid pWHU2653.

Funding

This work was supported by Beijing Natural Science Foundation (Grant No. 5184034) and the National Natural Science Foundation of China (Grant Nos. 31771378, 31800029, and 31470206).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue Li or Huarong Tan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approved

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 548 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Li, Y., Guan, H. et al. Enhancement of neomycin production by engineering the entire biosynthetic gene cluster and feeding key precursors in Streptomyces fradiae CGMCC 4.576. Appl Microbiol Biotechnol 103, 2263–2275 (2019). https://doi.org/10.1007/s00253-018-09597-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-09597-8

Keywords

Navigation