Skip to main content

Advertisement

Log in

Storage lipid and polysaccharide metabolism in Yarrowia lipolytica and Umbelopsis isabellina

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Complex biochemical mechanisms are being involved in oleaginous microorganisms during storage lipid and polysaccharide metabolism. Detailed biochemical analyses and monitoring of key enzymes involved in carbon metabolism were performed in Yarrowia lipolytica and Umbelopsis isabellina, which are often used as model oleaginous microorganisms. It was found that during the early oleaginous phase, the carbon source (glucose) was channeled to lipid accumulation, but also to polysaccharide biosynthesis. However, during transition from the early to the late oleaginous phase, glucose was exclusively converted to lipids, while in U. isabellina, but not in Y. lipolytica, an additional conversion of cellular polysaccharides into lipids was observed. After glucose depletion in the growth medium, cellular storage material was degraded either for generating maintenance energy or for supporting further microbial growth, depending on the availability of essential nutrients in the growth medium. We demonstrated that in both microorganisms, reserve lipids were exclusively used as an intra-cellular carbon source in order to generate energy for maintenance purpose. When cellular storage material degradation was related to new cell mass production, a bioconversion of lipids into new lipid-free material, consisting of polysaccharides and proteins, was observed in Y. lipolytica, while new lipid-free material in U. isabellina was richer in proteins. Lipid and polysaccharide remodeling may occur in some cases in both microorganisms. This study revealed some new biochemical features of oleaginous microorganisms that may be crucial for the design of new biotechnological processes, such as the production of bio-molecules of industrial, technological, and medical interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Angerbauer C, Siebenhofer M, Mittelbach M, Guebitz GM (2008) Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresour Technol 99:3051–3056

    Article  CAS  PubMed  Google Scholar 

  • Bellou S, Aggelis G (2012) Biochemical activities in Chlorella sp. and Nannochloropsis salina during lipid and sugar synthesis in a lab-scale open pond simulating reactor. J Biotechnol 164:318–329

    Article  CAS  PubMed  Google Scholar 

  • Bellou S, Triantaphyllidou IE, Aggeli D, Elazzazy AM, Baeshen MN, Aggelis G (2016a) Microbial oils as food additives: recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Curr Opin Biotechnol 37:24–35

    Article  CAS  PubMed  Google Scholar 

  • Bellou S, Triantaphyllidou IE, Mizerakis P, Aggelis G (2016b) High lipid accumulation in Yarrowia lipolytica cultivated under double limitation of nitrogen and magnesium. J Biotechnol 234:116–126

    Article  CAS  PubMed  Google Scholar 

  • Bergmeyer HU, Gawehn K, Grassl M (1974) Enzymatic assay of transaldolase (EC 2.2.1.2). In: Bergmeyer HU (ed) Methods of enzymatic analysis, 1st edn. Academic Press, New York, pp 513–514

    Google Scholar 

  • Bommareddy RR, Sabra W, Zeng AP (2017) Glucose-mediated regulation of glycerol uptake in Rhodosporidium toruloides: Ιnsights through transcriptomic analysis on dual substrate fermentation. Eng Life Sci 17:282–291

  • Boumann HA, Damen MJA, Versluis C, Heck AJR, De Kruijff B, De Kroon AIPM (2003) The two biosynthetic routes leading to phosphatidylcholine in yeast produce different sets of molecular species. Evidence for Lipid Remodeling Biochemistry 42:3054–3059

    CAS  PubMed  Google Scholar 

  • Browse J, McCourt PJ, Somerville CR (1986) Fatty acid composition of leaf lipids determined after combined digestion and fatty acid methyl ester formation from fresh tissue. Anal Biochem 152:141–145

    Article  CAS  PubMed  Google Scholar 

  • Chatzifragkou A, Fakas S, Galiotou-Panayotou M, Komaitis M, Aggelis G, Papanikolaou S (2010) Commercial sugars as substrates for lipid accumulation in Cunninghamella echinulata and Mortierella isabellina fungi. Eur J Lipid Sci Technol 112:1048–1057

    Article  CAS  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    Article  CAS  PubMed  Google Scholar 

  • Diamantopoulou P, Papanikolaou S, Aggelis G, Philippoussis A (2016) Adaptation of Volvariella volvacea metabolism in high carbon to nitrogen ratio media. Food Chem 196:272–280

    Article  CAS  PubMed  Google Scholar 

  • Diamantopoulou P, Papanikolaou S, Katsarou E, Komaitis M, Aggelis G, Philippoussis A (2012) Mushroom polysaccharides and lipids synthesized in liquid agitated and static cultures. Part II: study of Volvariella volvacea. Appl Biochem Biotechnol 167:1890–1906

    Article  CAS  PubMed  Google Scholar 

  • Diamantopoulou P, Papanikolaou S, Komaitis M, Aggelis G, Philippoussis A (2014) Patterns of major metabolites biosynthesis by different mushroom fungi grown on glucose-based submerged cultures. Bioprocess Biosyst Eng 37:1385–1400

    Article  CAS  PubMed  Google Scholar 

  • Dien BS, Zhu JY, Slininger PJ, Kurtzman CP, Moser BR, O’Bryan PJ, Gleisner R, Cotta MA (2016) Conversion of SPORL pretreated Douglas fir forest residues into microbial lipids with oleaginous yeasts. RSC Adv 6:20695–20705

  • Dourou M, Kancelista A, Juszczyk P, Sarris D, Bellou S, Triantaphyllidou I, Rywinska A, Papanikolaou S, Aggelis G (2016) Bioconversion of olive mill wastewater into high-added value products. J Clean Prod 139:957–969

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Fakas S, Makri A, Mavromati M, Tselepi M, Aggelis G (2009a) Fatty acid composition in lipid fractions lengthwise the mycelium of Mortierella isabellina and lipid production by solid state fermentation. Bioresour Technol 100:6118–6120

    Article  CAS  PubMed  Google Scholar 

  • Fakas S, Papanikolaou S, Batsos A, Galiotou-Panayotou M, Mallouchos A, Aggelis G (2009b) Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenergy 33:573–580

    Article  CAS  Google Scholar 

  • Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Fontanille P, Kumar V, Christophe G, Nouaille R, Larroche C (2012) Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica. Bioresour Technol 114:443–449

    Article  CAS  PubMed  Google Scholar 

  • Fyrst H, Knudsen J, Schott MA, Lubin BH, Kuypers FA (1995) Detection of acyl-CoA-binding protein in human red blood cells and investigation of its role in membrane phospholipid renewal. Biochem J 306:793–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gancedo JM, Gancedo C (1971) Fructose-1,6-diphosphatase, phosphofructokinase and glucose-6-phosphate dehydrogenase from fermenting and non fermenting yeasts. Arch Mikrobiol 76:132–138

    Article  CAS  PubMed  Google Scholar 

  • Garnier M, Carrier G, Rogniaux H, Nicolau E, Bougaran G, Saint-Jean B, Cadoret JP (2014) Comparative proteomics reveals proteins impacted by nitrogen deprivation in wild-type and high lipid-accumulating mutant strains of Tisochrysis lutea. J Proteome 105:107–120

    Article  CAS  Google Scholar 

  • Granger L-M, Perlot P, Goma G, Pareilleux A (1993) Effect of various nutrient limitations on fatty acid production by Rhodotorula glutinis. Appl Microbiol Biotechnol 38:784–789

    Article  CAS  Google Scholar 

  • Hansen RG, Albrecht GJ, Bass ST, Seifert LL (1966) UDP-glucose pyrophosphorylase (crystalline) from liver. Methods Enzymol 8:248–253

    Article  CAS  Google Scholar 

  • Holdsworth JE, Veenhuis M, Ratledge C (1988) Enzyme activities in oleaginous yeasts accumulating and utilizing exogenous or endogenous lipids. J Gen Microbiol 134:2907–2915

    CAS  PubMed  Google Scholar 

  • Joshi JG (1982) Phosphoglucomutase from yeast. Methods Enzymol 89:599–605

    Article  CAS  PubMed  Google Scholar 

  • Kopperschläger G (1994) Phosphofructokinase from baker's yeast. Methods Enzymol 228:144–153 

  • Kornberg A (1955) Isocitric dehydrogenase of yeast. Methods Enzymol 1:705–707

    Article  CAS  Google Scholar 

  • Lazarow PB, De Duve C (1976) A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci U S A 73:2043–2046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Sarkany N, Cui Y, Blackburn JW (2010) Batch stage study of lipid production from crude glycerol derived from yellow grease or animal fats through microalgal fermentation. Bioresour Technol 101:6745–6750

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Zhao X, Wang F, Li Y, Jiang X, Ye M, Zhao ZK, Zou H (2009) Comparative proteomic analysis of Rhodosporidium toruloides during lipid accumulation. Yeast 26:553–566

    Article  PubMed  Google Scholar 

  • Makri A, Fakas S, Aggelis G (2010) Metabolic activities of biotechnological interest in Yarrowia lipolytica grown on glycerol in repeated batch cultures. Bioresour Technol 101:2351–2358

    Article  CAS  PubMed  Google Scholar 

  • Marchesini S, Poirier Y (2003) Futile cycling of intermediates of fatty acid biosynthesis toward peroxisomal-oxidation in Saccharomyces cerevisiae. J Biol Chem 278:32596–32601

    Article  CAS  PubMed  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Papanikolaou S, Aggelis G (2002) Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single stage continuous culture. Bioresour Technol 82:43–49

    Article  CAS  PubMed  Google Scholar 

  • Papanikolaou S, Aggelis G (2010) Yarrowia lipolytica: a model microorganism used for the production of tailor-made lipids. Eur J Lipid Sci Technol 112:639–654

    Article  CAS  Google Scholar 

  • Papanikolaou S, Aggelis G (2011a) Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. Eur J Lipid Sci Technol 113:1031–1051

    Article  CAS  Google Scholar 

  • Papanikolaou S, Aggelis G (2011b) Lipids of oleaginous yeasts. Part II: technology and potential applications. Eur J Lipid Sci Technol 113:1052–1073

    Article  CAS  Google Scholar 

  • Papanikolaou S, Chevalot I, Komaitis M, Aggelis G, Marc I (2001) Kinetic profile of the cellular lipid composition in an oleaginous Yarrowia lipolytica capable of producing a cocoa-butter substitute from industrial fats. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol 80:215–224

    Article  CAS  Google Scholar 

  • Papanikolaou S, Chevalot I, Komaitis M, Marc I, Aggelis G (2002) Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Appl Microbiol Biotechnol 58:308–312

    Article  CAS  PubMed  Google Scholar 

  • Papanikolaou S, Komaitis M, Aggelis G (2004a) Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresour Technol 95:287–291

    Article  CAS  PubMed  Google Scholar 

  • Papanikolaou S, Muniglia L, Chevalot I, Aggelis G, Marc I (2003) Accumulation of a cocoa-butter-like lipid by Yarrowia lipolytica cultivated on agro-industrial residues. Curr Microbiol 46:124–130

    Article  CAS  PubMed  Google Scholar 

  • Papanikolaou S, Sarantou S, Komaitis M, Aggelis G (2004b) Repression of reserve lipid turnover in Cunninghamella echinulata and Mortierella isabellina cultivated in multiple-limited media. J Appl Microbiol 97:867–875

    Article  CAS  PubMed  Google Scholar 

  • Qi F, Zhao X, Kitahara Y, Li T, Ou X, Du W, Liu D, Huang J (2016) Integrative transcriptomic and proteomic analysis of the mutant lignocellulosic hydrolyzate-tolerant Rhodosporidium toruloides. Eng Life Sci 0:1–13

    Google Scholar 

  • Ratledge C (1994) Yeasts, moulds, algae and bacteria as sources of lipids. In: Kamel BS, Kakuda Y (eds) Technological advances in improved and alternative sources of lipids. Springer, Boston, pp 235–291

  • Ratledge C (2013) Microbial oils: an introductory overview of current status and future prospects. Ocl 20:D602

    Article  Google Scholar 

  • Ratledge C, Wynn JP (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–51

    Article  CAS  PubMed  Google Scholar 

  • Sara M, Brar SK, Blais JF (2016) Comparative study between microwave and ultrasonication aided in situ transesterification of microbial lipids. RSC Adv 6:56009–56017

    Article  CAS  Google Scholar 

  • Song P, Li L, Liu J (2013) Proteomic analysis in nitrogen-deprived Isochrysis galbana during lipid accumulation. PLoS One 8:1–13

    Article  CAS  Google Scholar 

  • Sparks LM, Moro C, Ukropcova B, Bajpeyi S, Civitarese AE, Hulver MW, Thoresen GH, Rustan AC, Smith SR (2011) Remodeling lipid metabolism and improving insulin responsiveness in human primary myotubes. PLoS One 6:1–10

    Google Scholar 

  • Srere A (1959) The citrate cleavage enzyme I. Distribution and purification J Biol Chem 234:2544–2547

    CAS  PubMed  Google Scholar 

  • Stremmel W, Pohl L, Ring A, Herrmann T (2001) A new concept of cellular uptake and intracellular trafficking of long-chain fatty acids. Lipids 36:981–989

    Article  CAS  PubMed  Google Scholar 

  • Subramaniam R, Dufreche S, Zappi M, Bajpai R (2010) Microbial lipids from renewable resources: production and characterization. J Ind Microbiol Biotechnol 37:1271–1287

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Zan X, Zhao L, Chen H, Chen YQ, Chen W, Song Y, Ratledge C (2016) Proteomics analysis of high lipid-producing strain Mucor circinelloides WJ11: an explanation for the mechanism of lipid accumulation at the proteomic level. Microb Cell Factories 15:35

    Article  Google Scholar 

  • Tchakouteu SS, Chatzifragkou A, Kalantzi O, Koutinas AA, Aggelis G, Papanikolaou S (2015a) Oleaginous yeast Cryptococcus curvatus exhibits interplay between biosynthesis of intracellular sugars and lipids. Eur J Lipid Sci Technol 117:657–672

    Article  CAS  Google Scholar 

  • Tchakouteu SS, Kalantzi O, Gardeli C, Koutinas AA, Aggelis G, Papanikolaou S (2015b) Lipid production by yeasts growing on biodiesel-derived crude glycerol: strain selection and impact of substrate concentration on the fermentation efficiency. J Appl Microbiol 118:911–927

    Article  CAS  PubMed  Google Scholar 

  • Tomaszewska-Hetman L, Rywińska A (2016) Erythritol biosynthesis from glycerol by Yarrowia lipolytica yeast: effect of osmotic pressure. Chem Pap

    Google Scholar 

  • Tomaszewska L, Rywińska A, Gladkowski W (2012) Production of erythritol and mannitol by Yarrowia lipolytica yeast in media containing glycerol. J Ind Microbiol Biotechnol 39:1333–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vamvakaki A-N, Kandarakis I, Kaminarides S, Komaitis M, Papanikolaou S (2010) Cheese whey as a renewable substrate for microbial lipid and biomass production by Zygomycetes. Eng Life Sci 10:348–360

    Article  CAS  Google Scholar 

  • Wild R, Patil S, Popović M, Zappi M, Dufreche S, Bajpai R (2010) Lipids from Lipomyces starkeyi. Food Technol Biotechnol 48:329–335

    CAS  Google Scholar 

  • Wynn JP, Hamid AA, Li Y, Ratledge C (2001) Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina. Microbiology 147:2857–2864

    Article  CAS  PubMed  Google Scholar 

  • Yang Z-K, Niu Y-F, Ma Y-H, Xue J, Zhang M-H, Yang W-D, Liu J-S, Lu S-H, Guan Y, Li H-Y (2013) Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation. Biotechnol Biofuels 6:67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang ZK, Ma YH, Zheng JW, Yang WD, Liu JS, Li HY (2014) Proteomics to reveal metabolic network shifts towards lipid accumulation following nitrogen deprivation in the diatom Phaeodactylum tricornutum. J Appl Phycol 26:73–82

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Tang X, Luan X, Chen HQ, Chen YQ, Chen W, Song Y, Ratledge C (2015) Role of pentose phosphate pathway in lipid accumulation of oleaginous fungus Mucor circinelloides. RSC Adv

    Google Scholar 

  • Zhu Z, Zhang S, Liu H, Shen H, Lin X, Yang F, Zhou YJ, Jin G, Ye M, Zou H, Zhao ZK (2012) A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nat Commun 3:1112

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. S. Bellou and Dr. I-E Triantaphyllidou for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Aggelis.

Ethics declarations

Funding information

The project was supported by the University of Patras.

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 305 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dourou, M., Mizerakis, P., Papanikolaou, S. et al. Storage lipid and polysaccharide metabolism in Yarrowia lipolytica and Umbelopsis isabellina . Appl Microbiol Biotechnol 101, 7213–7226 (2017). https://doi.org/10.1007/s00253-017-8455-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8455-6

Keywords

Navigation