Skip to main content

Advertisement

Log in

Current knowledge on agarolytic enzymes and the industrial potential of agar-derived sugars

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Agar is a major cell wall carbohydrate of red macroalgae (Rhodophyta). Sugars derived from agar, such as agarooligosaccharides (AOSs), neoagarooligosaccharides (NAOSs), neoagarobiose (NAB), and 3,6-anhydro-l-galactose (L-AHG), possess various physiological activities. These agar-derived sugars can be produced by hydrolysis using chemicals or agarolytic enzymes. Despite the industrial potential of agar-derived sugars, their application has been hampered mainly due to the absence of efficient processes for the liquefaction and saccharification of agar. In this review, we have focused on strategies for producing high value-added sugars from agarose via chemical or enzymatic liquefaction and enzymatic saccharification. The liquefaction of agarose is a key step for preventing gelling and increasing the solubility of agarose in water by prehydrolyzing agarose into AOSs or NAOSs. For the industrial use of agar-derived sugars, AOS, NAOS, NAB, and L-AHG can be used as functional biomaterials owing to their physiological activities such as antiinflammation, skin whitening, and moisturizing. Recently, it was reported that AHG could be considered as a new anticariogenic sugar to replace xylitol. This review provides a comprehensive overview of processes for the hydrolysis of agar or agarose to produce high value-added sugars and the industrial application of these sugars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Armisén R, Galatas F (1987) Production, properties and uses of agar. In: McHugh DJ (ed) Production and utilization of products from commercial seaweeds. FAO Fisheries Technical Paper 288. FAO, Rome, pp 1–57

    Google Scholar 

  • Bindels LB, Delzenne NM, Cani PD, Walter J (2015) Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol 12(5):303–310

    Article  CAS  PubMed  Google Scholar 

  • Brinker CJ, Scherer GW (1990) Sol−gel science: the physics and chemistry of sol−gel processing. Academic Press

  • Budavari S, O'Neil M, Smith A, Heckelman P, Obenchain J (1996) The Merck index, 12th edn. CRC Press, Boca Raton, p 34

    Google Scholar 

  • Chen H, Yan X, Zhu P, Lin J (2006) Antioxidant activity and hepatoprotective potential of agaro-oligosaccharides in vitro and in vivo. Nutr J 5(31):1–12

    CAS  Google Scholar 

  • Cui F, Dong S, Shi X, Zhao X, Zhang X-H (2014) Overexpression and characterization of a novel thermostable β-agarase YM01-3, from marine bacterium Catenovulum agarivorans YM01T. Mar Drugs 12(5):2731–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delattre C, Fenoradosoa TA, Michaud P (2011) Galactans: an overview of their most important sourcing and applications as natural polysaccharides. Braz Arch Biol Technol 54:1075–1092

    Article  CAS  Google Scholar 

  • Ekborg NA, Taylor LE, Longmire AG, Henrissat B, Weiner RM, Hutcheson SW (2006) Genomic and proteomic analyses of the agarolytic system expressed by Saccharophagus degradans 2-40. Appl Environ Microbiol 72(5):3396–3405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enoki T, Okuda S, Kudo Y, Takashima F, Sagawa H, Kato I (2010) Oligosaccharides from agar inhibit pro-inflammatory mediator release by inducing heme oxygenase 1. Biosci Biotechnol Biochem 74(4):766–770

    Article  CAS  PubMed  Google Scholar 

  • Flament D, Barbeyron T, Jam M, Potin P, Czjzek M, Kloareg B, Michel G (2007) Alpha-agarases define a new family of glycoside hydrolases, distinct from beta-agarase families. Appl Environ Microbiol 73(14):4691–4694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii T, Yano T, Kumagai H, Miyawaki O (2000) Scaling analysis on elasticity of agarose gel near the sol—gel transition temperature. Food Hydrocolloids 14(4):359–363

  • Goh CS, Lee KT (2010) A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development. Renew Sus Energ Rev 14(2):842–848

    Article  CAS  Google Scholar 

  • Ha SC, Lee S, Lee J, Kim HT, Ko H-J, Kim KH, Choi I-G (2011) Crystal structure of a key enzyme in the agarolytic pathway, α-neoagarobiose hydrolase from Saccharophagus degradans 2–40. Biochem Biophys Res Commun 412(2):238–244

    Article  CAS  PubMed  Google Scholar 

  • Hassairi I, Ben Amar R, Nonus M, Gupta BB (2001) Production and separation of α-agarase from Altermonas agarlyticus strain GJ1B. Bioresour Technol 79(1):47–51

    Article  CAS  PubMed  Google Scholar 

  • Hehemann J-H, Smyth L, Yadav A, Vocadlo DJ, Boraston AB (2012) Analysis of keystone enzyme in agar hydrolysis provides insight into the degradation (of a polysaccharide from) red seaweeds. J Biol Chem 287(17):13985–13995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higashimura Y, Naito Y, Takagi T, Mizushima K, Hirai Y, Harusato A, Ohnogi H, Yamaji R, Inui H, Nakano Y, Yoshikawa T (2013) Oligosaccharides from agar inhibit murine intestinal inflammation through the induction of heme oxygenase-1 expression. J Gastroenterol 48(8):897–909

    Article  CAS  PubMed  Google Scholar 

  • Higashimura Y, Naito Y, Takagi T, Uchiyama K, Mizushima K, Ushiroda C, Ohnogi H, Kudo Y, Yasui M, Inui S, Hisada T, Honda A, Matsuzaki Y, Yoshikawa T (2016) Protective effect of agaro-oligosaccharides on gut dysbiosis and colon tumorigenesis in high-fat diet-fed mice. Am J Physiol Gastrointest Liver Physiol 310(6):G367–G375

    Article  PubMed  Google Scholar 

  • Hu B, Gong Q, Wang Y, Ma Y, Li J, Yu W (2006) Prebiotic effects of neoagaro-oligosaccharides prepared by enzymatic hydrolysis of agarose. Anaerobe 12(5–6):260–266

    Article  CAS  PubMed  Google Scholar 

  • Indovina PL, Tettamanti E, Micciancio-Giammarinaro MS, Palma MU (1979) Thermal hysteresis and reversibility of gel–sol transition in agarose–water systems. J Chem Phys 70(6):2841–2847

    Article  CAS  Google Scholar 

  • Jang M-K, Lee D-G, Kim N-Y, Yu K-H, Jang H-J, Lee SW, Jang HJ, Lee YJ, Lee S-H (2009) Purification and characterization of neoagarotetraose from hydrolyzed agar. J Microbiol Biotechnol 19(10):1197–1200

    CAS  PubMed  Google Scholar 

  • Jung S, Lee C-R, Chi W-J, Bae C-H, Hong S-K (2017) Biochemical characterization of a novel cold-adapted GH39 β-agarase, AgaJ9, from an agar-degrading marine bacterium Gayadomonas joobiniege G7. Appl Microbiol Biotechnol 101(5):1965–1974

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Ryu HJ, Kim SH, Yoon J-J, Kim HS, Kim YJ (2010a) Acidity tunable ionic liquids as catalysts for conversion of agar into mixed sugars. Bull Kor Chem Soc 31(2):511–514

    Article  CAS  Google Scholar 

  • Kim HT, Lee S, Kim KH, Choi I-G (2012) The complete enzymatic saccharification of agarose and its application to simultaneous saccharification and fermentation of agarose for ethanol production. Bioresour Technol 107:301–306

    Article  CAS  PubMed  Google Scholar 

  • Kim HT, Lee S, Lee D, Kim H-S, Bang W-G, Kim KH, Choi I-G (2010b) Overexpression and molecular characterization of Aga50D from Saccharophagus degradans 2-40: an exo-type β-agarase producing neoagarobiose. Appl Microbiol Biotechnol 86(1):227–234

    Article  CAS  PubMed  Google Scholar 

  • Kim HT, Yun EJ, Wang D, Chung JH, Choi I-G, Kim KH (2013a) High temperature and low acid pretreatment and agarase treatment of agarose for the production of sugar and ethanol from red seaweed biomass. Bioresour Technol 136:582–587

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Yun EJ, Seo N, Yu S, Kim DH, Cho KM, An HJ, Kim J-H, Choi I-G, Kim KH (2017) Enzymatic liquefaction of agarose above the sol–gel transition temperature using a thermostable endo-type β-agarase, Aga16B. Appl Microbiol Biotechnol 101(3):1111–1120

    Article  CAS  PubMed  Google Scholar 

  • Kim KH, Choi IG, Kang NJ, Yun EJ, Lee SY, Kim JH, Kim YA, Kim BB, Baek EJ (2013b) Method for preparing 3,6-anhydro-L-galactose, and use thereof. PCT/KR2013/000423, World Intellectual Property Organization

  • Knutsen SH, Myslabodski DE, Larsen B, Usov AI (1994) A modified system of nomenclature for red algal galactans. Bot Mar 37(2):163–169

    Article  CAS  Google Scholar 

  • Knuuttila MLE, Mäkinen KK (1975) Effect of xylitol on the growth and metabolism of Streptococcus mutans. Caries Res 9(3):177–189

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi R, Takisada M, Suzuki T, Kirimura K, Usami S (1997) Neoagarobiose as a novel moisturizer with whitening effect. Biosci Biotechnol Biochem 61(1):162–163

    Article  CAS  PubMed  Google Scholar 

  • Lahaye M, Yaphe W, Viet MTP, Rochas C (1989) 13C-N.M.R. spectroscopic investigation of methylated and charged agarose oligosaccharides and polysaccharides. Carbohydr Res 190(2):249–265

    Article  CAS  Google Scholar 

  • Lee CH, Kim HT, Yun EJ, Lee AR, Kim SR, Kim J-H, Choi I-G, Kim KH (2014) A novel agarolytic β-galactosidase acts on agarooligosaccharides for complete hydrolysis of agarose into monomers. Appl Environ Microbiol 80(19):5965–5973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CH, Yun EJ, Kim HT, Choi I-G, Kim KH (2015) Saccharification of agar using hydrothermal pretreatment and enzymes supplemented with agarolytic β-galactosidase. Process Biochem 50(10):1629–1633

    Article  CAS  Google Scholar 

  • Li G, Sun M, Wu J, Ye M, Ge X, Wei W, Li H, Hu F (2015) Identification and biochemical characterization of a novel endo-type β-agarase AgaW from Cohnella sp. strain LGH. Appl Microbiol Biotechnol 99(23):10019–10029

    Article  CAS  PubMed  Google Scholar 

  • Li M, Li G, Zhu L, Yin Y, Zhao X, Xiang C, Yu G, Wang X (2014) Isolation and characterization of an agaro-oligosaccharide (AO)-hydrolyzing bacterium from the gut microflora of Chinese individuals. PLoS One 9(3):e91106

    Article  PubMed  PubMed Central  Google Scholar 

  • Malihan LB, Nisola GM, Mittal N, Lee S-P, Seo JG, Kim H, Chung W-J (2016) SBA-15 supported ionic liquid phase (SILP) with H2PW12O40 - for the hydrolytic catalysis of red macroalgal biomass to sugars. RSC Adv 6(40):33901–33909

    Article  CAS  Google Scholar 

  • Medina-Esquivel R, Freile-Pelegrin Y, Quintana-Owen P, Yáñez-Limón JM, Alvarado-Gil JJ (2008) Measurement of the sol–gel transition temperature in agar. Int J Thermophys 29(6):2036–2045

    Article  CAS  Google Scholar 

  • Mouradian WE, Wehr E, Crall JJ (2000) Disparities in children’s oral health and access to dental care. J Am Med Assoc 284(20):2625–2631

    Article  CAS  Google Scholar 

  • Ohta Y, Hatada Y, Miyazaki M, Nogi Y, Ito S, Horikoshi K (2005) Purification and characterization of a novel α-agarase from a Thalassomonas sp. Curr Microbiol 50(4):212–216

    Article  CAS  PubMed  Google Scholar 

  • Ohta Y, Hatada Y, Nogi Y, Li Z, Zhang H-M, Ito S, Horikoshi K (2004) Thermostable beta-agarase from a deep-sea Microbulbifer isolate. J Appl Glycosci 51(3):203–210

    Article  CAS  Google Scholar 

  • Park J-H, Hong J-Y, Jang HC, Oh SG, Kim S-H, Yoon J-J, Kim YJ (2012) Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour Technol 108:83–88

    Article  CAS  PubMed  Google Scholar 

  • Pluvinage B, Hehemann J-H, Boraston AB (2013) Substrate recognition and hydrolysis by a family 50 exo-β-agarase, Aga50D, from the marine bacterium Saccharophagus degradans. J Biol Chem 288(39):28078–28088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potin P, Richard C, Rochas C, Kloareg B (1993) Purification and characterization of the α-agarase from Alteromonas agarlyticus (Cataldi) comb. nov., strain GJ1B. FEBS J 214(2):599–607

    Article  CAS  Google Scholar 

  • Richardson TH, Tan XQ, Frey G, Callen W, Cabell M, Lam D, Macomber J, Short JM, Robertson DE, Miller C (2002) A novel, high performance enzyme for starch liquefaction—discovery and optimization of a low pH, thermostable α-amylase. J Biol Chem 277(29):26501–26507

    Article  CAS  PubMed  Google Scholar 

  • Saha D, Bhattacharya S (2010) Hydrocolloids as thickening and gelling agents in food: a critical review. J Food Sci Technol 47(6):587–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott TA (1988) The concise encyblopedia of biochemistry. Biochem Educ 16(4):208–210

    Article  Google Scholar 

  • Usov AI (1998) Structural analysis of red seaweed galactans of agar and carrageenan groups. Food Hydrocolloids 12(3):301–308

    Article  CAS  Google Scholar 

  • Wei N, Quarterman J, Jin Y-S (2013) Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends Biotechnol 31(2):70–77

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Yu G, Zhao X, Jiao G, Ren S, Chai W (2009) Mechanism of mild acid hydrolysis of galactan polysaccharides with highly ordered disaccharide repeats leading to a complete series of exclusively odd-numbered oligosaccharides. FEBS J 276(7):2125–2137

    Article  CAS  PubMed  Google Scholar 

  • Yun EJ, Choi I-G, Kim KH (2015a) Red macroalgae as a sustainable resource for bio-based products. Trends Biotechnol 33(5):247–249

    Article  CAS  PubMed  Google Scholar 

  • Yun EJ, Kim HT, Cho KM, Yu S, Kim S, Choi I-G, Kim KH (2016a) Pretreatment and saccharification of red macroalgae to produce fermentable sugars. Bioresour Technol 199:311–318

    Article  CAS  PubMed  Google Scholar 

  • Yun EJ, Lee AR, Kim JH, Cho KM, Kim KH (2017) 3,6-Anhydro-L-galactose, a rare sugar from agar, a new anticariogenic sugar to replace xylitol. Food Chem 221:976–983

    Article  CAS  PubMed  Google Scholar 

  • Yun EJ, Lee S, Kim HT, Pelton JG, Kim S, Ko H-J, Choi I-G, Kim KH (2015b) The novel catabolic pathway of 3,6-anhydro-L-galactose, the main component of red macroalgae, in a marine bacterium. Environ Microbiol 17(5):1677–1688

    Article  CAS  PubMed  Google Scholar 

  • Yun EJ, Lee S, Kim JH, Kim BB, Kim HT, Lee SH, Pelton JG, Kang NJ, Choi I-G, Kim KH (2013) Enzymatic production of 3,6-anhydro-L-galactose from agarose and its purification and in vitro skin whitening and anti-inflammatory activities. Appl Microbiol Biotechnol 97(7):2961–2970

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Korean Ministry of Trade, Industry & Energy (10052721). This study was performed at the Korea University Food Safety Hall for the Institute of Biomedical Science and Food Safety.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung Heon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, E.J., Yu, S. & Kim, K.H. Current knowledge on agarolytic enzymes and the industrial potential of agar-derived sugars. Appl Microbiol Biotechnol 101, 5581–5589 (2017). https://doi.org/10.1007/s00253-017-8383-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8383-5

Keywords

Navigation