Skip to main content

Advertisement

Log in

Use of Brevibacillus choshinensis for the production of biologically active brain-derived neurotrophic factor (BDNF)

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family critical for neuronal cell survival and differentiation, with therapeutic potential for the treatment of neurological disorders and spinal cord injuries. The production of recombinant, bioactive BDNF is not practical in most traditional microbial expression systems because of the inability of the host to correctly form the characteristic cystine-knot fold of BDNF. Here, we investigated Brevibacillus choshinensis as a suitable expression host for bioactive BDNF expression, evaluating the effects of medium type (2SY and TM), temperature (25 and 30 °C), and culture time (48–120 h). Maximal BDNF bioactivity (per unit mass) was observed in cultures grown in 2SY medium at extended times (96 h at 30 °C or >72 h at 25 °C), with resulting bioactivity comparable to that of a commercially available BDNF. For cultures grown in 2SY medium at 25 °C for 72 h, the condition that led to the greatest quantity of biologically active protein in the shortest culture time, we recovered 264 μg/L of BDNF. As with other microbial expression systems, BDNF aggregates did form in all culture conditions, indicating that while we were able to recover biologically active BDNF, further optimization of the expression system could yield still greater quantities of bioactive protein. This study provides confirmation that B. choshinensis is capable of producing biologically active BDNF and that further optimization of culture conditions could prove valuable in increasing BDNF yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baldwin RL (1986) Temperature dependence of the hydrophobic interaction in protein folding. Proc Natl Acad Sci U S A 83:8069–8072. doi:10.1073/pnas.83.21.8069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binder DK, Scharfman HE (2004) Brain-derived neurotrophic factor. Growth Factors 22:123–131. doi:10.1080/08977190410001723308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burns ML, Malott TM, Metcalf KJ, Hackel BJ, Chan JR, Shusta EV (2014) Directed evolution of brain-derived neurotrophic factor for improved folding and expression in Saccharomyces cerevisiae. Appl Environ Microbiol 80:5732–5742. doi:10.1128/AEM.01466-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Burns ML, Malott TM, Metcalf KJ, Puguh A, Chan JR, Shusta EV (2016) Pro-region engineering for improved yeast display and secretion of brain derived neurotrophic factor. Biotechnol J 11:425–436. doi:10.1002/biot.201500360

    Article  CAS  PubMed  Google Scholar 

  • Burton LE (1993) Production of recombinant neurotrophic factors. In: Bolton A, Baker G, Heft F (eds) Neurotrophic factors, vol 25. Springer Science, Humana Press, Totowa, New Jersey, pp 155–176. doi:10.1385/0-89603-249-3:155

  • Collins F, Kohno T, Lile J (1993) Production of biologically active recombinant members of the NGF/BDNF family of neurotrophic proteins. United States Patent 5,235,043, 10 Aug 1993

  • Fukuzono S, Fujimori K, Shimizu N (1995) Production of biologically active mature brain-derived neurotrophic factor in Escherichia coli. Biosci Biotechnol Biochem 59:1727–1731. doi:10.1271/bbb.59.1727

    Article  CAS  PubMed  Google Scholar 

  • GE Healthcare (2016) Affinity chromatograhpy vol 2: tagged proteins. http://www.gelifesciences.com/file_source/GELS/Service and Support/Documents and Downloads/Handbooks/pdfs/Affinity Chromatography Handbook-Tagged proteins.pdf. Accessed 11 Nov 2016

  • Hanagata H, Nishijyo T (2010) Brevibacillus choshinensis and process for producing protein with use of the microbe as host. United States Patent 7,655,452, 2 Feb 2010

  • Heymach JV, Shooter EM (1995) The biosynthesis of neurotrophin heterodimers by transfected mammalian cells. J Biol Chem 270:12297–12304. doi:10.1074/jbc.270.20.12297

    Article  CAS  PubMed  Google Scholar 

  • Hoshino K, Eda A, Kurokawa Y, Shimizu N (2002) Production of brain-derived neurotrophic factor in Escherichia coli by coexpression of Dsb proteins. Biosci Biotechnol Biochem 66:344–350. doi:10.1271/bbb.66.344

    Article  CAS  PubMed  Google Scholar 

  • Ibáñez CF, Simi A (2012) p75 neurotrophin receptor signaling in nervous system injury and degeneration: paradox and opportunity. Trends Neurosci 35:431–440. doi:10.1016/j.tins.2012.03.007

    Article  PubMed  Google Scholar 

  • Ilk N, Schumi C-T, Bohle B, Egelseer EM, Sleytr UB (2011) Expression of an endotoxin-free S-layer/allergen fusion protein in gram-positive Bacillus subtilis 1012 for the potential application as vaccines for immunotherapy of atopic allergy. Microb Cell Factories 10:6. doi:10.1186/1475-2859-10-6

    Article  CAS  Google Scholar 

  • Jungbluth S, Bailey K, Barde YA (1994) Purification and characterisation of a brain-derived neurotrophic factor/neurotrophin-3 (BDNF/NT-3) heterodimer. Eur J Biochem 221:677–685. doi:10.1111/j.1432-1033.1994.tb18780.x

  • Knusel B, Winslow JW, Rosenthal A, Burton LE, Seid DP, Nikolics K, Hefti F (1991) Promotion of central cholinergic and dopaminergic neuron differentiation by brain-derived neurotrophic factor but not neurotrophin 3. Proc Natl Acad Sci U S A 88:961–965. doi:10.1073/pnas.88.3.961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science 294:1945–1948. doi:10.1126/science.1065057

    Article  CAS  PubMed  Google Scholar 

  • Leibrock J, Lottspeich F, Hohn A, Hofer M, Hengerer B, Masiakowski P, Thoenen H, Barde Y (1989) Molecular cloning and expression of brain-derived neurotrophic factor. Nature 341:149–152. doi:10.1038/341149a0

    Article  CAS  PubMed  Google Scholar 

  • Lu B (2003) Pro-region of neurotrophins: role in synaptic modulation. Neuron 39:735–738. doi:10.1016/S0896-6273(03)00538-5

    Article  CAS  PubMed  Google Scholar 

  • Lu B, Pang PT, Woo NH (2005a) The yin and yang of neurotrophin action. Nat Rev Neurosci 6:603–614. doi:10.1038/nrn1726

    Article  CAS  PubMed  Google Scholar 

  • Lu P, Jones L, Tuszynski M (2005b) BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury. Exp Neurol 191:344–360. doi:10.1016/j.expneurol.2004.09.018

    Article  CAS  PubMed  Google Scholar 

  • Lynam DA, Shahriari D, Wolf KJ, Angart PA, Koffler J, Tuszynski MH, Chan C, Walton P, Sakamoto J (2015) Brain derived neurotrophic factor release from layer-by-layer coated agarose nerve guidance scaffolds. Acta Biomater 18:128–131. doi:10.1016/j.actbio.2015.02.014

    Article  CAS  PubMed  Google Scholar 

  • Maehashi K, Matano M, Saito M, Shigezo U (2010) Extracellular production of riboflavin-binding protein, a potential bitter inhibitor, by Brevibacillus choshinensis. Protein Expr Purif 71:85–90. doi:10.1016/j.pep.2009.12.016

    Article  CAS  PubMed  Google Scholar 

  • McCarty JH, Feinstein SC (1998) Activation loop tyrosines contribute varying roles to TrkB autophosphorylation and signal transduction. Oncogene 16:1691–1700. doi:10.1038/sj.onc.1201688

    Article  CAS  PubMed  Google Scholar 

  • Menei P, Montero-Menei C, Whittemore SR, Bunge RP, Bunge MB (1998) Schwann cells genetically modified to secrete human BDNF promote enhanced axonal regrowth across transected adult rat spinal cord. Eur J Neurosci 10:607–621. doi:10.1046/j.1460-9568.1998.00071.x

    Article  CAS  PubMed  Google Scholar 

  • Meyer M, Matsuoka I, Wetmore C, Olson L, Thoenen H (1992) Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: different mechanisms are responsible for the regulation of BDNF and NGF mRNA. J Cell Biol 119:45–54. doi:10.1083/jcb.119.1.45

    Article  CAS  PubMed  Google Scholar 

  • Meyer SL, Lang DM, Forbes ME, Knight JE, Hirsch JD, Trusko SP, Scott RW (1994) Production and characterization of recombinant mouse brain-derived neurotrophic factor and rat neurotrophin-3 expressed in insect cells. J Neurochem 62:825–833. doi:10.1046/j.1471-4159.1994.62030825.x

    Article  CAS  PubMed  Google Scholar 

  • Miyauchi A, Ozawa M, Mizukami M, Yashiro K, Ebisu S, Tojo T, Fujii T, Takagi H (1999) Structural conversion from non-native to native form of recombinant human epidermal growth factor by Brevibacillus choshinensis. Biosci Biotechnol Biochem 63:1965–1969. doi:10.1271/bbb.63.1965

    Article  CAS  PubMed  Google Scholar 

  • Mizukami M, Hanagata H, Miyauchi A (2010) Brevibacillus expression system: host-vector system for efficient production of secretory proteins. Curr Pharm Biotechnol 11:251–258. doi:10.2174/138920110791112031

    Article  CAS  PubMed  Google Scholar 

  • Mizukami M, Tokunaga H, Onishi H, Ueno Y, Hanagata H, Miyazaki N, Kiyose N, Ito Y, Ishibashi M, Hagihara Y, Arakawa T, Miyauchi A, Tokunaga M (2015) Highly efficient production of VHH antibody fragments in Brevibacillus choshinensis expression system. Protein Expr Purif 105:23–32. doi:10.1016/j.pep.2014.09.017

    Article  CAS  PubMed  Google Scholar 

  • Mowla SJ, Farhadi HF, Pareek S, Atwal JK, Morris SJ, Seidah NG, Murphy RA (2001) Biosynthesis and post-translational processing of the precursor to brain-derived neurotrophic factor. J Biol Chem 276:12660–12666. doi:10.1074/jbc.M008104200

    Article  CAS  PubMed  Google Scholar 

  • Nagahara AH, Tuszynski MH (2011) Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat Rev Drug Discov 10:209–219. doi:10.1038/nrd3366

    Article  CAS  PubMed  Google Scholar 

  • Numakawa T, Suzuki S, Kumamaru E, Adachi N, Richards M, Kunugi H (2010) BDNF function and intracellular signaling in neurons. Histol Histopathol 25:237–258. doi:10.14670/HH-25.237

  • Onishi H, Mizukami M, Hanagata H, Tokunaga M, Arakawa T, Miyauchi A (2013) Efficient production of anti-fluorescein and anti-lysozyme as single-chain anti-body fragments (scFv) by Brevibacillus expression system. Protein Expr Purif 91:184–191. doi:10.1016/j.pep.2013.08.005

    Article  CAS  PubMed  Google Scholar 

  • Park K, Shimizu N (1996) Expression of brain-derived neurotrophic factor by Bacillus subtilis. J Ferment Bioeng 82:585–588. doi:10.1016/S0922-338X(97)81257-3

    Article  CAS  Google Scholar 

  • Rosenfeld R, Benedek K (1993) Conformational changes of brain-derived neurotrophic factor during reversed-phase high-performance liquid chromatography. J Chromatogr 632:29–36. doi:10.1016/0021-9673(93)80022-Z

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal A, Goeddel DV, Nguyen T, Martin E, Burton LE, Shih A, Laramee GR, Wurm F, Mason A, Nikolics K, Winslow JW (1991) Primary structure and biological activity of human brain-derived neurotrophic factor. Endocrinology 129:1289–1294. doi:10.1210/endo-129-3-1289

    Article  CAS  PubMed  Google Scholar 

  • Schellman JA (1997) Temperature, stability, and the hydrophobic interaction. Biophys J 73:2960–2964. doi:10.1016/S0006-3495(97)78324-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu N, Fukuzono S, Fujimori K, Park K, Takeshita T, Ishibashi T (1996) Biological activity of brain-derived neurotrophic factor with mismatched disulfide linkages produced by Escherichia coli. Biosci Biotechnol Biochem 60:971–974. doi:10.1271/bbb.60.971

  • Soppet D, Escandon E, Maragos J, Middlemas DS, Reid SW, Blair J, Burton LE, Stanton BR, Kaplan DR, Hunter T, Nikolics K, Parada LF (1991) The neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 are ligands for the TrkB tyrosine kinase receptor. Cell 65:895–903. doi:10.1016/0092-8674(91)90396-G

    Article  CAS  PubMed  Google Scholar 

  • Sun PD, Davies DR (1995) The cystine-knot growth-factor superfamily. Annu Rev Biophys Biomol Struct 24:269–291. doi:10.1146/annurev.bb.24.060195.001413

    Article  CAS  PubMed  Google Scholar 

  • Takagi H, Kadowaki K, Udaka S (1989) Screening and characterization of protein-hyperproducing bacteria without detectable exoprotease activity. Agric Biol Chem 53:691–699. doi:10.1080/00021369.1989.10869382

    CAS  Google Scholar 

  • Takeshita T, Fujimori K, Shimizu N (1996) Synthesis of biologically active human nerve growth factor and brain-derived neurotrophic factor by a cell-free system. J Ferment Bioeng 81:13–17. doi:10.1016/0922-338X(96)83112-6

    Article  CAS  Google Scholar 

  • Tanaka K, Kumano M (2000) Stable pharmaceutical composition of BDNF. United States Patent 6,077,829, 20 June 2000

  • Teng HK, Teng KK, Lee R, Wright S, Tevar S, Almeida RD, Kermani P, Torkin R, Chen ZY, Lee FS, Kraemer RT, Nykjaer A, Hempstead BL (2005) ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci 25:5455–5463. doi:10.1523/jneurosci.5123-04.2005

    Article  CAS  PubMed  Google Scholar 

  • Vasina JA, Baneyx F (1997) Expression of aggregation-prone recombinant proteins at low temperatures: a comparative study of the Escherichia coli cspA and tac promoter systems. Protein Expr Purif 9:211–218. doi:10.1006/prep.1996.0678

    Article  CAS  PubMed  Google Scholar 

  • Yamagata H, Adachi T, Tsuboi A, Takao M, Sasaki T, Tsukagoshi N, Udaka S (1987) Cloning and characterization of the 5′ region of the cell wall protein gene operon in Bacillus brevis 47. J Bacteriol 169:1239–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuccato C, Cattaneo E (2009) Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol 5:311–322. doi:10.1038/nrneurol.2009.54

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Michael Garavito for his initial suggestion to work with B. choshinensis and his insights in culturing and preparing protein from B. choshinensis, the members of the Cellular and Biomolecular Laboratory, specifically Kwasi Adu-Berchie and Ian Drobish, for their intellectual support, and Professor R. Mark Worden for use of his plate reader for AlamarBlue readouts. Financial support for this work was provided, in part, by Michigan State University, the National Science Foundation (CBET 1510895 and 1547518), and the National Institutes of Health (GM079688, GM089866, and CA176854).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Patrick Walton.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 88 kb)

ESM 2

(PDF 3819 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angart, P.A., Carlson, R.J., Thorwall, S. et al. Use of Brevibacillus choshinensis for the production of biologically active brain-derived neurotrophic factor (BDNF). Appl Microbiol Biotechnol 101, 5645–5652 (2017). https://doi.org/10.1007/s00253-017-8273-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8273-x

Keywords

Navigation