Skip to main content
Log in

Microbial response to environmental stresses: from fundamental mechanisms to practical applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Environmental stresses are usually active during the process of microbial fermentation and have significant influence on microbial physiology. Microorganisms have developed a series of strategies to resist environmental stresses. For instance, they maintain the integrity and fluidity of cell membranes by modulating their structure and composition, and the permeability and activities of transporters are adjusted to control nutrient transport and ion exchange. Certain transcription factors are activated to enhance gene expression, and specific signal transduction pathways are induced to adapt to environmental changes. Besides, microbial cells also have well-established repair mechanisms that protect their macromolecules against damages inflicted by environmental stresses. Oxidative, hyperosmotic, thermal, acid, and organic solvent stresses are significant in microbial fermentation. In this review, we summarize the modus operandi by which these stresses act on cellular components, as well as the corresponding resistance mechanisms developed by microorganisms. Then, we discuss the applications of these stress resistance mechanisms on the production of industrially important chemicals. Finally, we prospect the application of systems biology and synthetic biology in the identification of resistant mechanisms and improvement of metabolic robustness of microorganisms in environmental stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Banat BM, Hoshida H, Ano A, Nonklang S, Akada R (2010) High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Appl Microbiol Biotechnol 85:861–867

    Article  CAS  PubMed  Google Scholar 

  • Abreu-Cavalheiro A, Monteiro G (2013) Solving ethanol production problems with genetically modified yeast strains. Braz J Microbiol 44:665–671

    Article  CAS  PubMed  Google Scholar 

  • Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568

    Article  CAS  PubMed  Google Scholar 

  • Amaro A, Chamorro D, Seeger M, Arredondo R, Peirano I, Jerez CA (1991) Effect of external pH perturbations on in vivo protein synthesis by the acidophilic bacterium Thiobacillus ferrooxidans. J Bacteriol 173:910–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ananthan J, Goldberg AL, Voellmy R (1986) Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science 232:522–524

    Article  CAS  PubMed  Google Scholar 

  • Asha H (1993) Genetic and molecular characterization of osmoregulatory genes in Escherichia coli: studies of mutations in kdp Operon and Ohter K+− transport genes. http://hdl.handle.net/10603/17771 Accessed 16 Apr 2014

  • Åslund F, Zheng M, Beckwith J, Storz G (1999) Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status. P Natl Acad Sci 96:6161–6165

    Article  Google Scholar 

  • Ballesteros I, Oliva J, Ballesteros M, Carrasco J (1993) Optimization of the simultaneous saccharification and fermentation process using thermotolerant yeasts. Appl Biochem Biotec 39:201–211

    Article  Google Scholar 

  • Bao Y, Jemth P, Mannervik B, Williamson G (1997) Reduction of thymine hydroperoxide by phospholipid hydroperoxide glutathione peroxidase and glutathione transferases. FEBS Lett 410:210–212

    Article  CAS  PubMed  Google Scholar 

  • Beales N (2004) Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: a review. Compre Rev Food Sci F 3:1–20

    Article  CAS  Google Scholar 

  • Bleoanca I, Bahrim G (2013) Overview on brewing yeast stress factors. Rom Biotech Lett 18:8559–8572

    CAS  Google Scholar 

  • Bukau B (1993) Regulation of the Escherichia coli heat-shock response. Mol Microbiol 9:671–680

    Article  CAS  PubMed  Google Scholar 

  • Cabiscol E, Tamarit J, Ros J (2010) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3:3–8

    Google Scholar 

  • Çakar ZP, Seker UO, Tamerler C, Sonderegger M, Sauer U (2005) Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae. FEMS Yeast Res 5:569–578

    Article  PubMed  CAS  Google Scholar 

  • Carmel-Harel O, Storz G (2000) Roles of the glutathione-and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol 54:439–461

    Article  CAS  PubMed  Google Scholar 

  • Caspeta L, Chen Y, Ghiaci P, Feizi A, Buskov S, Hallström BM, Petranovic D, Nielsen J (2014) Altered sterol composition renders yeast thermotolerant. Science 346:75–78

    Article  CAS  PubMed  Google Scholar 

  • Chen YY, Gänzle MG (2016) Influence of cyclopropane fatty acids on heat, high pressure, acid and oxidative resistance in Escherichia coli. Int J Food Microbiol 222:16–22

    Article  CAS  PubMed  Google Scholar 

  • Choi SH, Baumler DJ, Kaspar CW (2000) Contribution of dps to acid stress tolerance and oxidative stress tolerance in Escherichia coli O157: H7. Appl Environ Microb 66:3911–3916

    Article  CAS  Google Scholar 

  • Coleman ST, Fang TK, Rovinsky SA, Turano FJ, Moye-Rowley WS (2001) Expression of a glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae. J Biol Chem 276:244–250

    Article  CAS  PubMed  Google Scholar 

  • Compan I, Touati D (1993) Interaction of six global transcription regulators in expression of manganese superoxide dismutase in Escherichia coli K-12. J Bacteriol 175:1687–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coote P, Cole M, Jones M (1991) Induction of increased thermotolerance in Saccharomyces cerevisiae may be triggered by a mechanism involving intracellular pH. J Gen Microbiol 137:1701–1708

    Article  CAS  PubMed  Google Scholar 

  • Cornelis P, Wei Q, Andrews SC, Vinckx T (2011) Iron homeostasis and management of oxidative stress response in bacteria. Metabolomics 3:540–579

    Google Scholar 

  • Cox M (1991) The RecA protein as a recombinational repair system. Mol Microbiol 5:1295–1299

    Article  CAS  PubMed  Google Scholar 

  • De Virgilio C, Piper P, Boller T, Wiemken A (1991) Acquisition of thermotolerance in Saccharomyces cerevisiae without heat shock protein hsp104 and in the absence of protein synthesis. FEBS Lett 288:86–90

    Article  CAS  PubMed  Google Scholar 

  • Denich T, Beaudette L, Lee H, Trevors J (2003) Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. J Microbiol Methods 52:149–182

    Article  CAS  PubMed  Google Scholar 

  • Denisenko O, Yarchuk O (1990) Heat shock translational control in cell-free system. Antonie Van Leeuwenhoek 58:163–168

    Article  CAS  PubMed  Google Scholar 

  • Desmond C, Fitzgerald GF, Stanton C, Ross RP (2004) Improved stress tolerance of GroESL-overproducing Lactococcus lactis and orobiotic Lactobacillus paracasei NFBC 338. Appl Environ Microbiol 70:5929–5936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dizdaroglu M (2005) Base-excision repair of oxidative DNA damage by DNA glycosylases. Mutat Res-Fund Mol M 591:45–59

    Article  CAS  Google Scholar 

  • Dufourc EJ (2008) Sterols and membrane dynamics. J Chem Biol 1:63–77

    Article  PubMed  PubMed Central  Google Scholar 

  • Edgardo A, Carolina P, Manuel R, Juanita F, Baeza J (2008) Selection of thermotolerant yeast strains Saccharomyces cerevisiae for bioethanol production. Enzyme Microb Tech 43:120–123

    Article  CAS  Google Scholar 

  • Esmann M, Fedosova NU, Marsh D (2008) Osmotic stress and viscous retardation of the Na, K-ATPase ion pump. Biophys J 94:2767–2776

    Article  CAS  PubMed  Google Scholar 

  • Farizano JV, Torres MA, de las Mercedes Pescaretti M, Delgado MA (2014) The RcsCDB regulatory system plays a crucial role in the protection of Salmonella enterica serovar Typhimurium against oxidative stress. Microbiology 160:2190–2199

    Article  CAS  PubMed  Google Scholar 

  • Foo JL, Jensen HM, Dahl RH, George K, Keasling JD, Lee TS, Leong S, Mukhopadhyay A (2014) Improving microbial biogasoline production in Escherichia coli using tolerance engineering. MBio 5:e01932–e01914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu RY, Bongers RS, Van Swam II, Chen J, Molenaar D, Kleerebezem M, Hugenholtz J, Li Y (2006) Introducing glutathione biosynthetic capability into Lactococcus lactis subsp. cremoris NZ9000 improves the oxidative-stress resistance of the host. Metab Eng 8:662–671

    Article  CAS  PubMed  Google Scholar 

  • Gandhi A, Shah NP (2016) Effect of salt stress on morphology and membrane composition of Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium bifidum, and their adhesion to human intestinal epithelial-like Caco-2 cells. J Dairy Sci 99:2594–2605

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Liu Y, Sun H, Li C, Zhao Z, Liu G (2016) Advances in mechanisms and modifications for rendering yeast thermotolerance. J Biosci Bioeng 121:599–606

    Article  CAS  PubMed  Google Scholar 

  • Garai-Ibabe G, Saa L, Pavlov V (2013) Enzymatic product-mediated stabilization of CdS quantum dots produced in situ: application for detection of reduced glutathione, NADPH, and glutathione reductase activity. Anal Chem 85:5542–5546

    Article  CAS  PubMed  Google Scholar 

  • García CA, Alcaraz ES, Franco MA, de Rossi BNP (2015) Iron is a signal for Stenotrophomonas maltophilia biofilm formation, oxidative stress response, OMPs expression, and virulence. Front Microbiol 6:926

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibney PA, Schieler A, Chen JC, Rabinowitz JD, Botstein D (2015) Characterizing the in vivo role of trehalose in Saccharomyces cerevisiae using the AGT1 transporter. P Natl Acad Sci 112:6116–6121

    Article  CAS  Google Scholar 

  • Glaasker E, Heuberger E, Konings WN, Poolman B (1998) Mechanism of osmotic activation of the quaternary ammonium compound transporter (QacT) of Lactobacillus plantarum. J Bacteriol 180:5540–5546

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glatz A, Pilbat A-M, Németh GL, Vince-Kontár K, Jósvay K, Hunya Á, Udvardy A, Gombos I, Péter M, Balogh G (2016) Involvement of small heat shock proteins, trehalose, and lipids in the thermal stress management in Schizosaccharomyces pombe. Cell Stress Chaperon 21:327–338

    Article  CAS  Google Scholar 

  • Gligorovski S, Strekowski R, Barbati S, Vione D (2015) Environmental implications of hydroxyl radicals (• OH). Chem Rev 115:13051–13092

    Article  CAS  PubMed  Google Scholar 

  • Gottesman S, Maurizi MR (1992) Regulation by proteolysis: energy-dependent proteases and their targets. Microbiol Rev 56:592–621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grant R, Filman D, Finkel S, Kolter R, Hogle J (1998) The crystal structure of Dps, a ferritin homolog that binds and protects DNA. Nat Struct Mol Biol 5:294–303

    Article  CAS  Google Scholar 

  • Grin I, Zharkov D (2011) Eukaryotic endonuclease VIII-like proteins: new components of the base excision DNA repair system. Biochemistry-Moscow 76:80–93

    Article  CAS  PubMed  Google Scholar 

  • Guan N, Liu L, Zhuge X, Xu Q, Li J, Du G, Chen J (2012) Genome shuffling improves acid tolerance of Propionibacterium acidipropionici and propionic acid production. Adv Chem Res 15:143–152

    CAS  Google Scholar 

  • Guan N, Liu L, Shin HD, Chen RR, Zhang J, Li J, Du G, Shi Z, Chen J (2013) Systems-level understanding how Propionibacterium acidipropionici respond to propionic acid stress at the microenvironment levels: mechanism and application. J Biotechnol 167:56–63

    Article  CAS  PubMed  Google Scholar 

  • Guan N, Shin HD, Chen RR, Li J, Liu L, Du G, Chen J (2014) Understanding of how Propionibacterium acidipropionici respond to propionic acid stress at the level of proteomics. Sci Rep 4:6951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan N, Li J, Shin HD, Wu J, Du G, Shi Z, Liu L, Chen J (2015a) Comparative metabolomics analysis of the key metabolic nodes in propionic acid synthesis in Propionibacterium acidipropionici. Metabolomics 11:1106–1116

    Article  CAS  Google Scholar 

  • Guan N, Zhuge X, Li J, Shin HD, Wu J, Shi Z, Liu L (2015b) Engineering propionibacteria as versatile cell factories for the production of industrially important chemicals: advances, challenges, and prospects. Appl Microbiol Biotechnol 99:585–600

    Article  CAS  PubMed  Google Scholar 

  • Guan N, Li J, Shin HD, Du G, Chen J, Liu L (2016) Metabolic engineering of acid resistance elements to improve acid resistance and propionic acid production of Propionibacterium jensenii. Biotechnol Bioeng 113:1294–1304

    Article  CAS  PubMed  Google Scholar 

  • van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E (2002) Stress responses in lactic acid bacteria. Anton Leeuw Int J G 82:187–216

    Article  Google Scholar 

  • Guerzoni ME, Lanciotti R, Cocconcelli PS (2001) Alteration in cellular fatty acid composition as a response to salt, acid, oxidative and thermal stresses in Lactobacillus helveticus. Microbiology 147:2255–2264

    Article  CAS  PubMed  Google Scholar 

  • Guillot A, Obis D, Mistou MY (2000) Fatty acid membrane composition and activation of glycine-betaine transport in Lactococcus lactis subjected to osmotic stress. Int J Food Microbiol 55:47–51

    Article  CAS  PubMed  Google Scholar 

  • Guyot S, Gervais P, Young M, Winckler P, Dumont J, Davey HM (2015) Surviving the heat: heterogeneity of response in Saccharomyces cerevisiae provides insight into thermal damage to the membrane. Environ Microbiol 17:2982–2992

    Article  PubMed  PubMed Central  Google Scholar 

  • Hacking A, Taylor I, Hanas C (1984) Selection of yeast able to produce ethanol from glucose at 40 °C. Appl Microbiol Biotechnol 19:361–363

    Article  CAS  Google Scholar 

  • Hara KY, Shimodate N, Hirokawa Y, Ito M, Baba T, Mori H, Mori H (2009) Glutathione production by efficient ATP-regenerating Escherichia coli mutants. FEMS Microbiol Lett 297:217–224

    Article  CAS  PubMed  Google Scholar 

  • Held C, Sadowski G (2016) Compatible solutes: thermodynamic properties relevant for effective protection against osmotic stress. Fluid Phase Equilibr 407:224–235

    Article  CAS  Google Scholar 

  • Hemamalini R, Khare S (2014) A proteomic approach to understand the role of the outer membrane porins in the organic solvent-tolerance of Pseudomonas aeruginosa PseA. PLoS One 9:e103788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirasawa T, Yoshikawa K, Nakakura Y, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S (2007) Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. J Biotechnol 131:34–44

    Article  CAS  PubMed  Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol R 66:300–372

    Article  CAS  Google Scholar 

  • Hosseini Nezhad M, Hussain MA, Britz ML (2015) Stress responses in probiotic Lactobacillus casei. Crit Rev Food Sci 55:740–749

    Article  CAS  Google Scholar 

  • van Houten B, Hunter SE, Meyer JN (2016) Mitochondrial DNA damage induced autophagy, cell death, and disease. Front Biosci (Landmark Ed) 21:42–54

    Article  Google Scholar 

  • Huang C-S, Chang L-S, Anderson ME, Meister A (1993) Catalytic and regulatory properties of the heavy subunit of rat kidney gamma-glutamylcysteine synthetase. J Biol Chem 268:19675–19680

    CAS  PubMed  Google Scholar 

  • Hubatsch I, Ridderstrom M, Mannervik B (1998) Human glutathione transferase A4-4: an alpha class enzyme with high catalytic efficiency in the conjugation of 4-hydroxynonenal and other genotoxic products of lipid peroxidation. Biochem J 330:175–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imlay JA (2013) The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 11:443–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imlay JA (2015) Diagnosing oxidative stress in bacteria: not as easy as you might think. Curr Opin Microbiol 24:124–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izawa S, Ikeda K, Miki T, Wakai Y, Inoue Y (2010) Vacuolar morphology of Saccharomyces cerevisiae during the process of wine making and Japanese sake brewing. Appl Microbiol Biotechnol 88:277–282

    Article  CAS  PubMed  Google Scholar 

  • Jung YJ, Park HD (2005) Antisense-mediated inhibition of acid trehalase (ATH1) gene expression promotes ethanol fermentation and tolerance in Saccharomyces cerevisiae. Biotechnol Lett 27:1855–1859

    Article  CAS  PubMed  Google Scholar 

  • Karimi K, Emtiazi G, Taherzadeh MJ (2006) Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. Enzyme Microb Tech 40:138–144

    Article  CAS  Google Scholar 

  • Khaskheli GB, Zuo FL, Yu R, Chen SW (2015) Overexpression of small heat shock protein enhances heat- and salt-stress tolerance of Bifidobacterium longum NCC2705. Curr Microbiol 71:8–15

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Kim NR, Yang J, Choi W (2011) Identification of novel genes responsible for ethanol and/or thermotolerance by transposon mutagenesis in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 91:1159–1172

    Article  CAS  PubMed  Google Scholar 

  • Kimura Y, Kawasaki S, Yoshimoto H, Takegawa K (2010) Glycine betaine biosynthesized from glycine provides an osmolyte for cell growth and spore germination during osmotic stress in Myxococcus xanthus. J Bacteriol 192:1467–1470

    Article  CAS  PubMed  Google Scholar 

  • Koga T, Katagiri T, Hori H, Takumi K (2002) Alkaline adaptation induces cross-protection against some environmental stresses and morphological change in Vibrio parahaemolyticus. Microbiol Res 157:249–255

    Article  PubMed  Google Scholar 

  • Krauke Y, Sychrova H (2011) Cnh1 Na+/H+ antiporter and Ena1 Na+-ATPase play different roles in cation homeostasis and cell physiology of Candida glabrata. FEMS Yeast Res 11:29–41

    Article  CAS  PubMed  Google Scholar 

  • Kregel KC (2002) Invited review: heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92:2177–2186

    Article  CAS  PubMed  Google Scholar 

  • van Kuijk FJ, Sevanian A, Handelman GJ, Dratz EA (1987) A new role for phospholipase A2: protection of membranes from lipid peroxidation damage. Trends Biochem Sci 12:31–34

    Article  Google Scholar 

  • Li Y, Wei G, Chen J (2004) Glutathione: a review on biotechnological production. Appl Microbiol Biotechnol 66:233–242

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Hugenholtz J, Sybesma W, Abee T, Molenaar D (2005) Using Lactococcus lactis for glutathione overproduction. Appl Microbiol Biotechnol 67:83–90

    Article  CAS  PubMed  Google Scholar 

  • Liang G, Du G, Chen J (2008a) A novel strategy of enhanced glutathione production in high cell density cultivation of Candida utilis—cysteine addition combined with dissolved oxygen controlling. Enzyme Microb Tech 42:284–289

    Article  CAS  Google Scholar 

  • Liang G, Du G, Chen J (2008b) Enhanced glutathione production by using low-pH stress coupled with cysteine addition in the treatment of high cell density culture of Candida utilis. Lett Appl Microbiol 46:507–512

    Article  CAS  PubMed  Google Scholar 

  • Liang G, Liao X, Du G, Chen J (2008c) Elevated glutathione production by adding precursor amino acids coupled with ATP in high cell density cultivation of Candida utilis. J Appl Microbiol 105:1432–1440

    Article  CAS  PubMed  Google Scholar 

  • Liang G, Liao X, Du G, Chen J (2009) A new strategy to enhance glutathione production by multiple H2O2-induced oxidative stresses in Candida utilis. Bioresour Technol 100:350–355

    Article  CAS  PubMed  Google Scholar 

  • Liao X, Shen W, Chen J, Li Y, Du G (2006) Improved glutathione production by gene expression in Escherichia coli. Lett Appl Microbiol 43:211–214

    Article  CAS  PubMed  Google Scholar 

  • Liao X, Deng T, Zhu Y, Du G, Chen J (2008) Enhancement of glutathione production by altering adenosine metabolism of Escherichia coli in a coupled ATP regeneration system with Saccharomyces cerevisiae. J Appl Microbiol 104:345–352

    Article  CAS  PubMed  Google Scholar 

  • Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50

    Article  CAS  PubMed  Google Scholar 

  • Lipinska B, Zylicz M, Georgopoulos C (1990) The HtrA (DegP) protein, essential for Escherichia coli survival at high temperatures, is an endopeptidase. J Bacteriol 172:1791–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipton SA, Bossy-Wetzel E (2002) Dueling activities of AIF in cell death versus survival: DNA binding and redox activity. Cell 111:147–150

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Xu O, Li Y, Shi Z, Zhu Y, Du G, Chen J (2007) Enhancement of pyruvate osmotic-tolerant mutant production by of Torulopsis glabrata. Biotechnol Bioeng 97:825–832

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Wisniewski M, Droby S, Vero S, Tian S, Hershkovitz V (2011) Glycine betaine improves oxidative stress tolerance and biocontrol efficacy of the antagonistic yeast Cystofilobasidium infirmominiatum. Int J Food Microbiol 146:76–83

    Article  CAS  PubMed  Google Scholar 

  • Lončar N, Fraaije MW (2015) Catalases as biocatalysts in technical applications: current state and perspectives. Appl Microbiol Biotechnol 99:3351–3357

    Article  PubMed  CAS  Google Scholar 

  • Ma R, Zhang Y, Hong H, Lu W, Lin M, Chen M, Zhang W (2011) Improved osmotic tolerance and ethanol production of ethanologenic Escherichia coli by IrrE, a global regulator of radiation-resistance of Deinococcus radiodurans. Curr Microbiol 62:659–664

    Article  CAS  PubMed  Google Scholar 

  • Macalady J, Banfield JF (2003) Molecular geomicrobiology: genes and geochemical cycling. Earth Planet Sci Lett 209:1–17

    Article  CAS  Google Scholar 

  • Maeng S, Ko Y-J, Kim G-B, Jung K-W, Floyd A, Heitman J, Bahn Y-S (2010) Comparative transcriptome analysis reveals novel roles of the ras and cyclic AMP signaling pathways in environmental stress response and antifungal drug sensitivity in Cryptococcus neoformans. Eukaryot Cell 9:360–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiorino M, Thomas JP, Girotti AW, Ursini F (1991) Reactivity of phospholipid hydroperoxide glutathione peroxidase with membrane and lipoprotein lipid hydroperoxides. Free Radic Res Commun 12:131–135

    Article  PubMed  Google Scholar 

  • Manuel Rodriguez-Pena J, Garcia R, Nombela C, Arroyo J (2010) The high-osmolarity glycerol (HOG) and cell wall integrity (CWI) signalling pathways interplay: a yeast dialogue between MAPK routes. Yeast 27:495–502

    Article  CAS  Google Scholar 

  • Marles-Wright J, Lewis RJ (2007) Stress responses of bacteria. Curr Opin Struc Biol 17:755–760

    Article  CAS  Google Scholar 

  • Marty-Teysset C, De La Torre F, Garel J-R (2000) Increased production of hydrogen peroxide by Lactobacillus delbrueckii subsp. bulgaricus upon aeration: involvement of an NADH oxidase in oxidative stress. Appl Environ Microbiol 66:262–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melis JP, van Steeg H, Luijten M (2013) Oxidative DNA damage and nucleotide excision repair. Antioxid Redox Sign 18:2409–2419

    Article  CAS  Google Scholar 

  • Metris A, George S, Mulholland F, Carter A, Baranyi J (2014) E. coli under salt stress: metabolic shift in the presence of glycine betaine. Appl Environ Microbiol 80:4745–4756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millati R, Niklasson C, Taherzadeh MJ (2002) Effect of pH, time and temperature of overliming on detoxification of dilute-acid hydrolyzates for fermentation by Saccharomyces cerevisiae. Process Biochem 38:515–522

    Article  CAS  Google Scholar 

  • Misra S, Sharma V, Srivastava AK (2015) Bacterial polysaccharides: an overview. In: Ramawat KG, Mérillon JM (eds) Polysaccharides: Bioactivity and Biotechnology. Springer, Switzerland, pp 81–108

    Chapter  Google Scholar 

  • Mosialou E, Ekström G, Adang AE, Morgenstern R (1993) Evidence that rat liver microsomal glutathione transferase is responsible for glutathione-dependent protection against lipid peroxidation. Biochem Pharmacol 45:1645–1651

    Article  CAS  PubMed  Google Scholar 

  • Mukwevho E, Ferreira Z, Ayeleso A (2014) Potential role of sulfur-containing antioxidant systems in highly oxidative environments. Molecules 19:19376–19389

    Article  PubMed  CAS  Google Scholar 

  • Nakayama H, Mitsui T, Nishihara M, Kito M (1980) Relation between growth temperature of E. coli and phase transition temperatures of its cytoplasmic and outer membranes. Biochim Biophys Acta Biomembr 601:1–10

    Article  CAS  Google Scholar 

  • Neves M-J, François J (1992) On the mechanism by which a heat shock induces trehalose accumulation in Saccharomyces cerevisiae. Biochem J 288:859–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 12:307–331

    Article  CAS  PubMed  Google Scholar 

  • Nikolouli K, Mossialos D (2016) Functional characterization of TtgABC efflux pump of the RND family in the entomopathogenic bacterium Pseudomonas entomophila. Ann Microbiol 66:499–503

    Article  CAS  Google Scholar 

  • Nilsen L, Forstrøm RJ, Bjørås M, Alseth IAP (2012) Endonuclease independent repair of abasic sites in Schizosaccharomyces pombe. Nucleic Acids Res 40:2000–2009

    Article  CAS  PubMed  Google Scholar 

  • Oide S, Gunji W, Moteki Y, Yamamoto S, Suda M, Jojima T, Yukawa H, Inui M (2015) Thermal and solvent stress cross-tolerance conferred to Corynebacterium glutamicum by adaptive laboratory evolution. Appl Environ Microb 81:2284–2298

    Article  CAS  Google Scholar 

  • Okuda M, Niwa T, Taguchi H (2015) Single-molecule analyses of the dynamics of heat shock protein 104 (Hsp104) and protein aggregates. J Biol Chem 290:7833–7840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onraedt A, De Mey M, Walcarius B, Soetaert W, Vandamme EJ (2006) Transport kinetics of ectoine, an osmolyte produced by Brevibacterium epidermis. Biotechnol Lett 28:1741–1747

    Article  CAS  PubMed  Google Scholar 

  • Pamplona R, Barja G, Portero-Otin M (2002) Membrane fatty acid unsaturation, protection against oxidative stress, and maximum life span. Ann N Y Acad Sci 959:475–490

    Article  CAS  PubMed  Google Scholar 

  • Parsell D, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496

    Article  CAS  PubMed  Google Scholar 

  • Phong TT, Hung LT, Bich Phuong LT, Hanh VT, Hoshida H, Akada R (2012) Selection and identification of thermotolerant ethanol producing yeast strains. Tap Chi Sinh Hoc 34:125–131

    Article  Google Scholar 

  • Piper PW (1993) Molecular events associated with acquisition of heat tolerance by the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 11:339–355

    Article  CAS  PubMed  Google Scholar 

  • Podar M, Reysenbach AL (2006) New opportunities revealed by biotechnological explorations of extremophiles. Curr Opin Biotech 17:250–255

    Article  CAS  PubMed  Google Scholar 

  • Price-Whelan A, Poon CK, Benson MA, Eidem TT, Roux CM, Boyd JM, Dunman PM, Torres VJ, Krulwich TA (2013) Transcriptional profiling of Staphylococcus aureus during growth in 2 M NaCl leads to clarification of physiological roles for Kdp and Ktr K+ uptake systems. MBio 4:e00407–e00413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Purnick PE, Weiss R (2009) The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol 10:410–422

    Article  CAS  PubMed  Google Scholar 

  • Purvis JE, Yomano L, Ingram L (2005) Enhanced trehalose production improves growth of Escherichia coli under osmotic stress. Appl Environ Microb 71:3761–3769

    Article  CAS  Google Scholar 

  • Ramos JL, Cuenca MS, Molina-Santiago C, Segura A, Duque E, Gómez-García MR, Udaondo Z, Roca A (2015) Mechanisms of solvent resistance mediated by interplay of cellular factors in Pseudomonas putida. FEMS Microbiol Rev 39:555–566

    Article  PubMed  Google Scholar 

  • Ramotar D, Popoff SC, Gralla EB, Demple B (1991) Cellular role of yeast Apn1 apurinic endonuclease/3′-diesterase: repair of oxidative and alkylation DNA damage and control of spontaneous mutation. Mol Cell Biol 11:4537–4544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reina-Bueno M, Argandoña M, Salvador M, Rodríguez-Moya J, Iglesias-Guerra F, Csonka LN, Nieto JJ, Vargas C (2012) Role of trehalose in salinity and temperature tolerance in the model halophilic bacterium Chromohalobacter salexigens. PLoS One 7:e33587

  • Russell NJ, Evans RI, terSteeg PF, Hellemons J, Verheul A, Abee T (1995) Membranes as a target for stress adaptation. Int J Food Microbiol 28:255–261

    Article  CAS  PubMed  Google Scholar 

  • Sardessai YN (2015) Insights into organic-solvent-tolerant bacteria and their biotechnological potentials. In: Borkar S (ed) Bioprospects of coastal eubacteria. Springer International Publishing, Switzerland, pp 129–149

    Google Scholar 

  • Seo SW, Kim D, Szubin R, Palsson BO (2015) Genome-wide reconstruction of OxyR and SoxRS transcriptional regulatory networks under oxidative stress in Escherichia coli K-12 MG1655. Cell Rep 12:1289–1299

    Article  CAS  PubMed  Google Scholar 

  • Sévin DC, Sauer U (2014) Ubiquinone accumulation improves osmotic-stress tolerance in Escherichia coli. Nat Chem Biol 10:266–272

    Article  PubMed  CAS  Google Scholar 

  • Shah AA, Wang C, Chung YR, Kim JY, Choi ES, Kim SW (2013) Enhancement of geraniol resistance of Escherichia coli by MarA overexpression. J Biosci Bioeng 115:253–258

    Article  CAS  PubMed  Google Scholar 

  • Sharma P (2014) Structural and computational investigation of charge transfer mechanism in SmTGR. Master thesis No. 201061002, International Institute of Information Technology Hyderabad, India

  • Shaw AJ, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR, Thorne PG, Hogsett DA, Lynd LR (2009) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Int Sugar J 111:164–171

    CAS  Google Scholar 

  • Shi D, Wang C, Wang K (2009) Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J Ind Microbiol Biot 36:139–147

    Article  CAS  Google Scholar 

  • Shu J, Soo P, Chen J, Hsu S, Chen L, Chen C, Liang S, Buu L, Chen C (2013) Differential regulation and activity against oxidative stress of Dps proteins in Bacillus cereus. Int J Med Microbiol 303:662–673

    Article  CAS  PubMed  Google Scholar 

  • Singer MA, Lindquist S (1998) Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechnol 16:460–468

    Article  CAS  PubMed  Google Scholar 

  • Stanley D, Fraser S, Chambers PJ, Rogers P, Stanley GA (2010) Generation and characterisation of stable ethanol-tolerant mutants of Saccharomyces cerevisiae. J Ind Microbiol Biot 37:139–149

    Article  CAS  Google Scholar 

  • Storz G (2016) New perspectives: Insights into oxidative stress from bacterial studies. Arch Biochem Biophys 595:25–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugimoto S, Higashi C, Matsumoto S, Sonomoto K (2010) Improvement of multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 under conditions of thermal stress by heterologous expression of Escherichia coli dnaK. Appl Environ Microb 76(13):4277–4285

    Article  CAS  Google Scholar 

  • Szczodrak J, Targoński Z (1988) Selection of thermotolerant yeast strains for simultaneous saccharification and fermentation of cellulose. Biotechnol Bioeng 31:300–303

    Article  CAS  PubMed  Google Scholar 

  • Tao K (1999) In vivo oxidation-reduction kinetics of OxyR, the transcriptional activator for an oxidative stress-inducible regulon in Escherichia coli. FEBS Lett 457:90–92

    Article  CAS  PubMed  Google Scholar 

  • Tarusawa T, Ito S, Goto S, Ushida C, Muto A, Himeno H (2016) (p) ppGpp-dependent and-independent pathways for salt tolerance in Escherichia coli. J Biochem. doi:10.1093/jb/mvw008

    PubMed  Google Scholar 

  • Trewick SC, Henshaw TF, Hausinger RP, Lindahl T, Sedgwick B (2002) Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage. Nature 419:174–178

    Article  CAS  PubMed  Google Scholar 

  • Uchida K (2015) Aldehyde adducts generated during lipid peroxidation modification of proteins. Free Radic Res 49:896–904

    Article  CAS  PubMed  Google Scholar 

  • Uyar EO, Hamamci H, Tuerkel S (2010) Effect of different stresses on trehalose levels in Rhizopus oryzae. J Basic Microbiol 50:368–372

    Article  CAS  PubMed  Google Scholar 

  • Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J (2004) Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 266:37–56

    Article  CAS  PubMed  Google Scholar 

  • Veinger L, Diamant S, Buchner J, Goloubinoff P (1998) The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J Biol Chem 273:11032–11037

    Article  CAS  PubMed  Google Scholar 

  • Vidal R, Lopez-Maury L, Guerrero MG, Florencio FJ (2009) Characterization of an alcohol dehydrogenase from the Cyanobacterium synechocystis sp strain PCC 6803 that responds to environmental stress conditions via the hik34-rre1 two-component system. J Biotechnol 191:4383–4391

    CAS  Google Scholar 

  • Wallace SS (2013) DNA glycosylases search for and remove oxidized DNA bases. Environ Mol Mutagen 54:691–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Lu W, Lu S, Kong J (2015) Protective role of glutathione against oxidative stress in Streptococcus thermophilus. Int Dairy J 45:41–47

    Article  CAS  Google Scholar 

  • Warringer J, Hult M, Regot S, Posas F, Sunnerhagen P (2010) The HOG pathway dictates the short-term translational response after hyperosmotic shock. Mol Biol Cell 21:3080–3092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei G, Li Y, Du G, Chen J (2003a) Application of a two-stage temperature control strategy for enhanced glutathione production in the batch fermentation by Candida utilis. Biotechnol Lett 25:887–890

    Article  CAS  PubMed  Google Scholar 

  • Wei G, Li Y, Du G, Chen J (2003b) Effect of surfactants on extracellular accumulation of glutathione by Saccharomyces cerevisiae. Process Biochem 38:1133–1138

    Article  CAS  Google Scholar 

  • Westfall PJ, Patterson JC, Chen RE, Thorner J (2008) Stress resistance and signal fidelity independent of nuclear MAPK function. P Natl Acad Sci USA 105:12212–12217

    Article  CAS  Google Scholar 

  • Wiemken A (1990) Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie Van Leeuwenhoek 58:209–217

    Article  CAS  PubMed  Google Scholar 

  • Winkler JD, Garcia C, Olson M, Callaway E, Kao KC (2014) Evolved osmotolerant Escherichia coli mutants frequently exhibit defective N-acetylglucosamine catabolism and point mutations in cell shape-regulating protein MreB. Appl Environ Microbiol 80:3729–3740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wolf A, Krämer R, Morbach S (2003) Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC13032 and their significance in response to osmotic stress. Mol Microbiol 49:1119–1134

    Article  CAS  PubMed  Google Scholar 

  • Wong YK, Holland SI, Ertan H, Manefield M, Lee M (2016) Isolation and characterization of Dehalobacter sp. strain UNSWDHB capable of chloroform and chlorinated ethane respiration. Environ Microbiol 18:3092–3105

    Article  CAS  PubMed  Google Scholar 

  • Wood JM (2015) Bacterial responses to osmotic challenges. J Gen Physiol 145:381–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C, Zhang J, Wang M, Du G, Chen J (2012) Lactobacillus casei combats acid stress by maintaining cell membrane functionality. J Ind Microbiol Biot 39:1031–1039

    Article  CAS  Google Scholar 

  • Wu R, Song X, Liu Q, Ma D, Xu F, Wang Q, Tang X, Wu J (2016) Gene expression of Lactobacillus plantarum FS5-5 in response to salt stress. Ann Microbiol 66:1181–1188

    Article  CAS  Google Scholar 

  • Wyman CE (1994) Ethanol from lignocellulosic biomass: technology, economics, and opportunities. Bioresour Technol 50:3–15

    Article  CAS  Google Scholar 

  • Xiong L, Teng JL, Watt RM, Kan B, Lau S, Woo P (2014) Arginine deiminase pathway is far more important than urease for acid resistance and intracellular survival in Laribacter hongkongensis: a possible result of arc gene cassette duplication. BMC Microbiol 14:42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu S, Zhou J, Liu L, Chen J (2010) Proline enhances Torulopsis glabrata growth during hyperosmotic stress. Biotechnol Bioproc E 15:285–292

    Article  CAS  Google Scholar 

  • Xu S, Zhou J, Liu L, Chen J (2011) Arginine: a novel compatible solute to protect Candida glabrata against hyperosmotic stress. Process Biochem 46:1230–1235

    Article  CAS  Google Scholar 

  • Yaakov G, Duch A, Garcia-Rubio M, Clotet J, Jimenez J, Aguilera A, Posas F (2009) The stress-activated protein kinase Hog1 mediates S phase delay in response to osmostress. Mol Biol Cell 20:3572–3582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yazawa H, Iwahashi H, Uemura H (2007) Disruption of URA7 and GAL6 improves the ethanol tolerance and fermentation capacity of Saccharomyces cerevisiae. Yeast 24:551–560

    Article  CAS  PubMed  Google Scholar 

  • Zaprasis A, Brill J, Thuering M, Wuensche G, Heun M, Barzantny H, Hoffmann T, Bremer E (2013) Osmoprotection of Bacillus subtilis through import and proteolysis of proline-containing peptides. Appl Environ Microbiol 79:576–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang A, Yang ST (2009) Engineering Propionibacterium acidipropionici for enhanced propionic acid tolerance and fermentation. Biotechnol Bioeng 104:766–773

    CAS  PubMed  Google Scholar 

  • Zhang J, Wu C, Du G, Chen J (2012) Enhanced acid tolerance in Lactobacillus casei by adaptive evolution and compared stress response during acid stress. Biotechnol Bioproc E 17:283–289

    Article  CAS  Google Scholar 

  • Zhao X, Bai F (2009) Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production. J Biotechnol 144:23–30

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Zhao Y, Zhao B, Ge R, Li M, Shen Y, Huang Z (2009) Cloning and functional analysis of wheat V-H plus -ATPase subunit genes. Plant Mol Biol 69:33–46

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Li J, Tan M, Liu L, Li J, Sun J, Lee P, Du G, Chen J (2010) Optimization and scale-up of propionic acid production by propionic acid-tolerant Propionibacterium acidipropionici with glycerol as the carbon source. Bioresour Technol 101:8902–8906

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Wei P, Cai J, Zhu X, Wang Z, Huang L, Xu Z (2012) Improving the productivity of propionic acid with FBB-immobilized cells of an adapted acid-tolerant Propionibacterium acidipropionici. Bioresour Technol 112:248–253

    Article  CAS  PubMed  Google Scholar 

  • Zi Z, Liebermeister W, Klipp E (2010) A quantitative study of the Hog1 MAPK response to fluctuating osmotic stress in Saccharomyces cerevisiae. PLoS One 5:e9522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zingaro KA, Papoutsakis ET (2013) GroESL overexpression imparts Escherichia coli tolerance to i-, n-, and 2-butanol, 1, 2, 4-butanetriol and ethanol with complex and unpredictable patterns. Metab Eng 15:196–205

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the 863 project (2014AA021201), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the 111 Project (111-2-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, N., Li, J., Shin, Hd. et al. Microbial response to environmental stresses: from fundamental mechanisms to practical applications. Appl Microbiol Biotechnol 101, 3991–4008 (2017). https://doi.org/10.1007/s00253-017-8264-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8264-y

Keywords

Navigation