Skip to main content
Log in

Enhancing productivity for cascade biotransformation of styrene to (S)-vicinal diol with biphasic system in hollow fiber membrane bioreactor

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biotransformation is a green and useful tool for sustainable and selective chemical synthesis. However, it often suffers from the toxicity and inhibition from organic substrates or products. Here, we established a hollow fiber membrane bioreactor (HFMB)-based aqueous/organic biphasic system, for the first time, to enhance the productivity of a cascade biotransformation with strong substrate toxicity and inhibition. The enantioselective trans-dihydroxylation of styrene to (S)-1-phenyl-1,2-ethanediol, catalyzed by Escherichia coli (SSP1) coexpressing styrene monooxygenase and an epoxide hydrolase, was performed in HFMB with organic solvent in the shell side and aqueous cell suspension in the lumen side. Various organic solvents were investigated, and n-hexadecane was found as the best for the HFMB-based biphasic system. Comparing to other reported biphasic systems assisted by HFMB, our system not only shield much of the substrate toxicity but also deflate the product recovery burden in downstream processing as the majority of styrene stayed in organic phase while the diol product mostly remained in the aqueous phase. The established HFMB-based biphasic system enhanced the production titer to 143 mM, being 16-fold higher than the aqueous system and 1.6-fold higher than the traditional dispersive partitioning biphase system. Furthermore, the combination of biphasic system with HFMB prevents the foaming and emulsification, thus reducing the burden in downstream purification. HFMB-based biphasic system could serve as a suitable platform for enhancing the productivity of single-step or cascade biotransformation with toxic substrates to produce useful and valuable chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJ, Hanai T, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metabolic Eng 10(6):305–311

    Article  CAS  Google Scholar 

  • Brandenbusch C, Bühler B, Hoffmann P, Sadowski G, Schmid A (2010) Efficient phase separation and product recovery in organic-aqueous bioprocessing using supercritical carbon dioxide. Biotech Bioeng 107(4):642–651

    Article  CAS  Google Scholar 

  • Breuer M, Ditrich K, Habicher T, Hauer B, Kesseler M, Sturmer R, Zelinski T (2004) Industrial methods for the production of optically active intermediates. Angew Chem Int Ed 43(7):788–824

    Article  CAS  Google Scholar 

  • Buchholz K, Kasche V, Bornscheuer UT (2012) Biocatalysts and enzyme technology. Wiley-Blackwell, Hoboken

  • Burton SG (2003) Oxidizing enzymes as biocatalysts. Trends Biotechnol 21(12):543–549

    Article  CAS  PubMed  Google Scholar 

  • Chang D, Heringa MF, Witholt B, Li Z (2003a) Enantioselective trans dihydroxylation of nonactivated C-C double bond of aliphatic heterocycles with Sphingomonas sp. HXN-200. J Org Chem 68(22):8599–8606

    Article  CAS  PubMed  Google Scholar 

  • Chang D, Wang Z, Heringa MF, Wirthner R, Witholt B, Li Z (2003b) Highly enantioselective hydrolysis of alicyclic meso-epoxides with a bacterial epoxide hydrolase from Sphingomonas sp. HXN-200: simple syntheses of alicyclic vicinal transdiols. Chem Commun (8):960–1

  • Collins J, Grund M, Brandenbusch C, Sadowski G, Schmid A, Bühler B (2015) The dynamic influence of cells on the formation of stable emulsions in organic–aqueous biotransformations. J Ind Microbiol Biotechnol 42(7):1011–1026

    Article  CAS  PubMed  Google Scholar 

  • Connors N, Prevoznak R, Chartrain M, Reddy J, Singhvi R, Patel Z, Olewinski R, Salmon P, Wilson J, Greasham R (1997) Conversion of indene to cis-(1S),(2R)-indandiol by mutants of Pseudomonas putida F1. J Ind Microbiol Biotechnol 18(6):353–359

    Article  CAS  Google Scholar 

  • Cornmell RJ, Winder CL, Schuler S, Goodacre R, Stephens G (2008) Using a biphasic ionic liquid/water reaction system to improve oxygenase-catalysed biotransformation with whole cells. Green Chem 10(6):685–691

    Article  CAS  Google Scholar 

  • Duetz WA, Van Beilen JB, Witholt B (2001) Using proteins in their natural environment: potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis. Curr Opin Biotechnol 12(4):419–425

    Article  CAS  PubMed  Google Scholar 

  • Faber K (1997) Biotransformations in organic chemistry, 3rd edn. Springer, Berlin, pp. 300–308

    Book  Google Scholar 

  • Gao P, Li A, Lee HH, Wang DI, Li Z (2014) Enhancing enantioselectivity and productivity of P450-catalyzed asymmetric sulfoxidation with an aqueous/ionic liquid biphasic system. ACS Catal 4(10):3763–3771

    Article  CAS  Google Scholar 

  • Gavrilov KN, Zheglov SV, Gavrilova MN, Chuchelkin IV, Groshkin NN, Rastorguev EA, Davankov VA (2011) Phosphoramidites based on phenyl-substituted 1, 2-diols as ligands in palladium-catalyzed asymmetric allylations: the contribution of steric demand and chiral centers to the enantioselectivity. Tetrahedron Lett 52(43):5706–5710

    Article  CAS  Google Scholar 

  • Gong P-F, Xu J-H (2005) Bio-resolution of a chiral epoxide using whole cells of Bacillus megaterium ECU1001 in a biphasic system. Enzyme Microb Tech 36(2):252–257

    Article  CAS  Google Scholar 

  • Hack C, Woodley J, Lilly M, Liddell J (2000) Design of a control system for biotransformation of toxic substrates: toluene hydroxylation by Pseudomonas putida UV4. Enzyme Microb Tech 26(7):530–536

    Article  Google Scholar 

  • Halan B, Schmid A, Buehler K (2010) Maximizing the productivity of catalytic biofilms on solid supports in membrane aerated reactors. Biotech Bioeng 106(4):516–527

    Article  CAS  Google Scholar 

  • He J-Y, Sun Z-H, Ruan W-Q, Xu Y (2006) Biocatalytic synthesis of ethyl (S)-4-chloro-3-hydroxy-butanoate in an aqueous-organic solvent biphasic system using Aureobasidium pullulans CGMCC 1244. Process Biochem 41(1):244–249

    Article  CAS  Google Scholar 

  • Hüsken LE, Oomes M, Schroën K, Tramper J, de Bont JA, Beeftink R (2002) Membrane-facilitated bioproduction of 3-methylcatechol in an octanol/water two-phase system. J Biotechnol 96(3):281–289

    Article  PubMed  Google Scholar 

  • Jia X, Wang Z, Li Z (2008) Preparation of (S)-2-, 3-, and 4-chlorostyrene oxides with the epoxide hydrolase from Sphingomonas sp. HXN-200. Tetrahedron Asymmetry 19(4):407–415

    Article  CAS  Google Scholar 

  • Kansal H, Banerjee UC (2009) Enhancing the biocatalytic potential of carbonyl reductase of Candida viswanathii using aqueous-organic solvent system. Biores Technol 100(3):1041–1047

    Article  CAS  Google Scholar 

  • Karabika E, Kallimanis A, Dados A, Pilidis G, Drainas C, Koukkou A (2009) Taxonomic identification and use of free and entrapped cells of a new Mycobacterium sp., strain Spyr1 for degradation of polycyclic aromatic hydrocarbons (PAHs). Appl Biochem Biotech 159(1):155–167

    Article  CAS  Google Scholar 

  • Kim J-H, Yang H, Park J, Boons G-J (2005) A general strategy for stereoselective glycosylations. J Am Chem Soc 127(34):12090–12097

    Article  CAS  PubMed  Google Scholar 

  • Ladkau N, Schmid A, Bühler B (2014) The microbial cell—functional unit for energy dependent multistep biocatalysis. Curr Opin Biotechnol 30(4):178–189

    Article  CAS  PubMed  Google Scholar 

  • Lau J, Frykman S, Regentin R, Ou S, Tsuruta H, Licari P (2002) Optimizing the heterologous production of epothilone D in Myxococcus xanthus. Biotech Bioeng 78(3):280–288

    Article  CAS  Google Scholar 

  • Li Z, Van Beilen JB, Duetz WA, Schmid A, de Raadt A, Griengl H, Witholt B (2002) Oxidative biotransformations using oxygenases. Curr Opin Chem Biol 6(2):136–144

    Article  CAS  PubMed  Google Scholar 

  • Li A-T, Zhang J-D, Yu H-L, Pan J, Xu J-H (2011) Significantly improved asymmetric oxidation of sulfide with resting cells of Rhodococcus sp. in a biphasic system. Process Biochem 46(3):689–694

    Article  CAS  Google Scholar 

  • Li A, Liu J, Pham SQ, Li Z (2013) Engineered P450pyr monooxygenase for asymmetric epoxidation of alkenes with unique and high enantioselectivity. Chem Commun 49(98):11572–11574

    Article  CAS  Google Scholar 

  • Liu J, Li Z (2013) Cascade biotransformations via enantioselective reduction, oxidation, and hydrolysis: preparation of (R)-δ-lactones from 2-alkylidenecyclopentanones. ACS Catal 3(5):908–911

    Article  CAS  Google Scholar 

  • Liu Z, Michel J, Wang Z, Witholt B, Li Z (2006) Enantioselective hydrolysis of styrene oxide with the epoxide hydrolase of Sphingomonas sp. HXN-200. Tetrahedron Asymmetry 17(1:47–52

    Article  Google Scholar 

  • Liu J, Wu JC, Li Z (2014) Enoyl acyl carrier protein reductase (FabI) catalyzed asymmetric reduction of the C-C double bond of α,β-unsaturated ketones: preparation of (R)-2-alkyl-cyclopentanones. Chem Commun 50(68):9729–9732

    Article  CAS  Google Scholar 

  • Lye G, Woodley J (2000) Advances in the selection and design of two-liquid phase biocatalytic reactors. In: Cabral JMS, Mota M, Tramper J (eds) Multiphase bioreactor design. Taylor and Francis, London, pp. 115–134

    Google Scholar 

  • May SW, Padgette R (1983) Oxidoreductase enzymes in biotechnology: current status and future potential. Nat Biotechnol 1:677–686

    Article  CAS  Google Scholar 

  • Mei J, Min H, Lü Z (2009) Enhanced biotransformation of L-phenylalanine to 2-phenylethanol using an in situ product adsorption technique. Process Biochem 44(8):886–890

    Article  CAS  Google Scholar 

  • Mirata MA, Heerd D, Schrader J (2009) Integrated bioprocess for the oxidation of limonene to perillic acid with Pseudomonas putida DSM 12264. Process Biochem 44(7):764–771

    Article  CAS  Google Scholar 

  • Molinari F, Aragozzini F, Cabral J, Prazeres D (1997) Continuous production of isovaleraldehyde through extractive bioconversion in a hollow-fiber membrane bioreactor. Enzyme Microb Tech 20(8):604–611

    Article  CAS  Google Scholar 

  • Muschiol J, Peters C, Oberleitner N, Mihovilovic MD, Bornscheuer UT, Rudroff F (2015) Cascade catalysis—strategies and challenges en route to preparative synthetic biology. Chem Commun 51:5798–5811

    Article  CAS  Google Scholar 

  • Pandey RK, Fernandes RA, Kumar P (2002) An asymmetric dihydroxylation route to enantiomerically pure norfluoxetine and fluoxetine. Tetrahedron Lett 43(25):4425–4426

    Article  CAS  Google Scholar 

  • Panke S, Held M, Wubbolts M (2004) Trends and innovations in industrial biocatalysis for the production of fine chemicals. Curr Opin Biotech 15(4):272–279

    Article  CAS  PubMed  Google Scholar 

  • Park JB, Bühler B, Habicher T, Hauer B, Panke S, Witholt B, Schmid A (2006) The efficiency of recombinant Escherichia coli as biocatalyst for stereospecific epoxidation. Biotechnol Bioeng 95(3):501–512

    Article  CAS  PubMed  Google Scholar 

  • Park SW, Han SJ, Kim D-S, Sim SJ (2007) Improvement of epothilone B production by in situ removal of ammonium using cation exchange resin in Sorangium cellulosum culture. Biochem Eng J 37(3):328–331

    Article  CAS  Google Scholar 

  • Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Götz F (1999) Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 274(13):8405–8410

    Article  CAS  PubMed  Google Scholar 

  • Pfruender H, Amidjojo M, Kragl U, Weuster-Botz D (2004) Efficient whole-cell biotransformation in a biphasic ionic liquid/water system. Angew Chem Int Ed 43(34):4529–4531

    Article  CAS  Google Scholar 

  • Praveen P, Loh K-C (2012) Two-phase biodegradation of phenol in a hollow fiber membrane bioreactor. J Environ Eng 139(5):654–660

    Article  Google Scholar 

  • Praveen P, Loh K-C (2013a) Simultaneous extraction and biodegradation of phenol in a hollow fiber supported liquid membrane bioreactor. J Membrane Sci 430:242–251

    Article  CAS  Google Scholar 

  • Praveen P, Loh K-C (2013b) Two-phase biodegradation of phenol in trioctylphosphine oxide impregnated hollow fiber membrane bioreactor. Biochem Eng J 79:274–282

    Article  CAS  Google Scholar 

  • Praveen P, Loh K-C (2014) Kinetics modeling of two phase biodegradation in a hollow fiber membrane bioreactor. Sep Purif Technol 122:350–358

    Article  CAS  Google Scholar 

  • Raghavan S, Rathore K (2009) Asymmetric synthesis of (−)-tetrahydrolipstatin. Tetrahedron 65(48):10083–10092

    Article  CAS  Google Scholar 

  • Reetz MT, Zonta A, Schimossek K, Jaeger KE, Liebeton K (1997) Creation of enantioselective biocatalysts for organic chemistry by in vitro evolution. Angew Chem Int Ed 36(24):2830–2832

    Article  CAS  Google Scholar 

  • Roddick FA, Britz ML (1997) Production of hexanoic acid by free and immobilised cells of Megasphaera elsdenii: influence of in-situ product removal using ion exchange resin. J Chem Technol Biot 69(3):383–391

    Article  CAS  Google Scholar 

  • Schrewe M, Julsing MK, Bühler B, Schmid A (2013) Whole-cell biocatalysis for selective and productive C–O functional group introduction and modification. Chem Soc Rev 42(15):6346–6377

    Article  CAS  PubMed  Google Scholar 

  • Urlacher VB, Eiben S (2006) Cytochrome P450 monooxygenases: perspectives for synthetic application. Trends Biotechnol 24(7):324–330

    Article  CAS  PubMed  Google Scholar 

  • Urlacher VB, Girhard M (2012) Cytochrome P450 monooxygenases: an update on perspectives for synthetic application. Trends Biotechnol 30(1):26–36

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Dong Q, Meng C, Shi XA, Guo Y (2011) A continuous and adsorptive bioprocess for efficient production of the natural aroma chemical 2-phenylethanol with yeast. Enzyme Microb Tech 48(4):404–407

    Article  CAS  Google Scholar 

  • Wojaczynska E, Wojaczynski J (2010) Enantioselective synthesis of sulfoxides: 2000–2009. Chem Rev 110(7):4303–4356

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Li A, Chin YS, Li Z (2013) Enantioselective hydrolysis of racemic and meso-epoxides with recombinant Escherichia coli expressing epoxide hydrolase from Sphingomonas sp. HXN-200: preparation of epoxides and vicinal diols in high ee and high concentration. ACS Catal 3(4):752–759

    Article  CAS  Google Scholar 

  • Wu S, Chen Y, Xu Y, Li A, Xu Q, Glieder A, Li Z (2014) Enantioselective trans-dihydroxylation of aryl olefins by cascade biocatalysis with recombinant Escherichia coli coexpressing monooxygenase and epoxide hydrolase. ACS Catal 4(2):409–420

    Article  CAS  Google Scholar 

  • Wu S, Zhou Y, Wang T, Too H-P, Wang DI, Li Z (2016a) Highly regio-and enantioselective multiple oxy-and amino-functionalizations of alkenes by modular cascade biocatalysis. Nat Commun. doi:10.1038/ncomms11917

    Google Scholar 

  • Wu S, Liu J, Li Z (2016b) Organic synthesis via oxidative cascade biocatalysis. Synlett DOI. doi:10.1055/s-0036-1588627

    Google Scholar 

  • Xu Y, Jia X, Panke S, Li Z (2009) Asymmetric dihydroxylation of aryl olefins by sequential enantioselective epoxidation and regioselective hydrolysis with tandem biocatalysts. Chem Commun 12:1481–1483

    Article  Google Scholar 

  • Xu Y, Li A, Jia X, Li Z (2011) Asymmetric trans-dihydroxylation of cyclic olefins by enzymatic or chemo-enzymatic sequential epoxidation and hydrolysis in one-pot. Green Chem 13(9):2452–2458

    Article  CAS  Google Scholar 

  • Xue Y-P, Liu Z-Q, Xu M, Wang Y-J, Zheng Y-G, Shen Y-C (2010) Enhanced biotransformation of (R, S)-mandelonitrile to (R)-(−)-mandelic acid with in situ production removal by addition of resin. Biochem Eng J 53(1):143–149

    Article  CAS  Google Scholar 

  • Yang Y, Liu J, Li Z (2014) Engineering of P450pyr hydroxylase for the highly regio-and enantioselective subterminal hydroxylation of alkanes. Angew Chem Int Ed 53(12):3120–3124

    Article  CAS  Google Scholar 

  • Zhang W, Tang W, Wang ICD, Li Z (2011) Concurrent oxidations with tandem biocatalysts in one pot: green, selective and clean oxidations of methylene groups to ketones. Chem Commun 47(11):3284–3286

    Article  CAS  Google Scholar 

  • Zhang J, Xu T, Li Z (2013) Enantioselective biooxidation of racemic trans-cyclic vicinal diols: one-pot synthesis of both enantiopure (S, S)-cyclic vicinal diols and (R)-α-hydroxy ketones. Adv Synth Catal 355(16):3147–3153

    Article  CAS  Google Scholar 

  • Zhao L-Q, Sun Z-H, Zheng P, He J-Y (2006) Biotransformation of isoeugenol to vanillin by Bacillus fusiformis CGMCC1347 with the addition of resin HD-8. Process Biochem 41(7):1673–1676

    Article  CAS  Google Scholar 

  • Zhou Y, Wu S, Li Z (2016) Cascade biocatalysis for sustainable asymmetric synthesis: from biobased L-phenylalanine to high-value chiral chemicals. Angew Chem Int Ed 55(38):11647–11650

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Li.

Ethics declarations

Funding

This study was funded by Singapore-MIT Alliance through a CPE Flagship research Program and by GlaxoSmithKline (GSK) and Singapore Economic Development Board (EDB) through a Green and Sustainable Manufacturing grant (project No. 279-000-331-592).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, P., Wu, S., Praveen, P. et al. Enhancing productivity for cascade biotransformation of styrene to (S)-vicinal diol with biphasic system in hollow fiber membrane bioreactor. Appl Microbiol Biotechnol 101, 1857–1868 (2017). https://doi.org/10.1007/s00253-016-7954-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7954-1

Keywords

Navigation