Skip to main content
Log in

Psc-AFP from Psoralea corylifolia L. overexpressed in Pichia pastoris increases antimicrobial activity and enhances disease resistance of transgenic tobacco

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Psc-AFP, isolated from the seeds of Psoralea corylifolia L., is an antimicrobial protein with trypsin inhibitor activity. Its encoding gene was cloned by 3′- rapid amplification of cDNA ends (RACE) combined with Y-shaped adaptor-dependent extension (YADE) method. The gene Psc-AFP encodes a protein of 203 amino acids with a deduced signal peptide of 24 residues. The growth inhibition effect exerted by the heterologously expressed Psc-AFP in Pichia pastoris revealed that the recombinant Psc-AFP inhibited mycelium growth of Aspergillus niger, Rhizoctonia solani, and Alternaria brassicae and conidial germination of Alternaria alternata. The recombinant Psc-AFP also showed protease inhibitor activity manifested by the inhibition of trypsin. The transgenic tobacco bioassays confirmed that overexpressing Psc-AFP significantly enhanced the disease resistance of tobacco and that some of the transgenic lines were almost fully tolerant to Ralstonia solanacearum and A. alternata, whereas no apparent alteration in plant growth and development was observed. Collectively, these results indicate that the recombinant Psc-AFP is an active antimicrobial protein, with protease inhibitor activity that can be successfully produced in the yeast and tobacco and, therefore, maybe a potential antimicrobial candidate for practical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:w252–w258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66

    Article  CAS  PubMed  Google Scholar 

  • Charity JA, Hughes P, Anderson MA, Bittisnich DJ, Whitecross M, Higgins T (2005) Pest and disease protection conferred by expression of barley β–hordothionin and Nicotiana alata proteinase inhibitor genes in transgenic tobacco. Funct Plant Biol 32:35–44

    Article  CAS  Google Scholar 

  • Chassot C, Nawrath C, Metraux JP (2007) Cuticular defects lead to full immunity to a major plant pathogen. Plant J 49:972–980

  • Chen PY, Wang CK, Soong SC, To KY (2003) Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insertion from transgenic plants. Mol Breeding 11:287–293

    Article  CAS  Google Scholar 

  • Chen Z-Y, Brown RL, Lax AR, Cleveland TE, Russin JS (1999) Inhibition of plant-pathogenic fungi by a corn trypsin inhibitor overexpressed in Escherichia coli. Appl Environ Microb 65:1320–1324

    CAS  Google Scholar 

  • Cruz ACB, Massena FS, Migliolo L, Macedo LLP, Monteiro NKV, Oliveira AS, Macedo FP, Uchoa AF, Grossi de Sá MF, Vasconcelos IM, Murad AM, Franco OL, Santos EA (2013) Bioinsecticidal activity of a novel Kunitz trypsin inhibitor from Catanduva (Piptadenia moniliformis) seeds. Plant Physiol Bioch 70:61–68

    Article  CAS  Google Scholar 

  • da Silva Bezerra C, de Oliveira CFR, Machado OLT, de Mello GSV, da Rocha Pitta MG, de Melo Rêgo MJB, Silva ON (2016) Exploiting the biological roles of the trypsin inhibitor from Inga vera seeds: a multifunctional Kunitz inhibitor. Process Biochem 51:792–803

  • de Souza Cândido E, Pinto MFS, Pelegrini PB, Lima TB, Silva ON, Pogue R, Franco OL (2011) Plant storage proteins with antimicrobial activity: novel insights into plant defense mechanisms. The FASEB J 25:3290–3305

  • De Wit PJ (1997) Pathogen avirulence and plant resistance: a key role for recognition. Trends Plant Sci 2:452–458

    Article  Google Scholar 

  • Dokka MK, Seva L, Davuluri SP (2015) Antifungal activity of trypsin inhibitors from the seeds of Abelmoschus moschatus. Int J Pharm Sci Res 6:3920–3927

    CAS  Google Scholar 

  • Dunaevskiĭ I, Elpidina E, Vinokurov K, Belozerskiĭ M (2004) Protease inhibitors: use to increase plant tolerance to insects and pathogens. Mol Biol 39:702–708

    Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J (2013) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230 gkt1223

    Article  PubMed  PubMed Central  Google Scholar 

  • Frisch DA, Harris-Haller LW, Yokubaitis NT, Thomas TL, Hardin SH, Hall TC (1995) Complete sequence of the binary vector bin 19. Plant Mol Biol 27:405–409

    Article  CAS  PubMed  Google Scholar 

  • Fürstenberg-Hägg J, Zagrobelny M, Bak S (2013) Plant defense against insect herbivores. Int J Mol Sci 14:10242–10297

    Article  PubMed  PubMed Central  Google Scholar 

  • Gase K, Weinhold A, Bozorov T, Schuck S, Baldwin IT (2011) Efficient screening of transgenic plant lines for ecological research. Mol Ecol Resour 11:890–902

    Article  PubMed  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  CAS  PubMed  Google Scholar 

  • Hoekema A, Hirsch P, Hooykaas P, Schilperoort R (1983) A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  • Horsch R, Fry J, Hoffmann N, Eichholtz D, Sa R, Fraley R (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Jaynes JM, Nagpala P, Destéfano-Beltrán L, Huang JH, Kim J, Denny T, Cetiner S (1993) Expression of a cecropin B lytic peptide analog in transgenic tobacco confers enhanced resistance to bacterial wilt caused by Pseudomonas solanacearum. Plant Sci 89:43–53

    Article  CAS  Google Scholar 

  • Johal GS, Briggs SP (1992) Reductase activity encoded by the HM1 disease resistance gene in maize. Science 258:985–987

  • Kim JY, Park SC, Kim MH, Lim HT, Park Y, Hahm KS (2005) Antimicrobial activity studies on a trypsin–chymotrypsin proteinase inhibitor obtained from potato. Biochem Bioph Res C 330:921–927

    Article  CAS  Google Scholar 

  • Kruger NJ (2009) The Bradford method for protein quantitation. The Protein Protocols Handbook. Springer, Totowa, pp. 17–24

  • Laskowski MJ, Kato I (1980) Protein inhibitors of proteinases. Annu Rev Biochem 49:593–626

    Article  CAS  PubMed  Google Scholar 

  • Li H, Wu M, Wang Q, Pan X, Luo W, Chen W (1992) Modification of a method applied in measuring serum trypsin inhibitor capacity. J of Luzhou Med College 1:35–38

    Google Scholar 

  • Lopes JLS, Valadares NF, Moraes DI, Rosa JC, Araújo HSS, Beltramini LM (2009) Physicochemical and antifungal properties of protease inhibitors from Acacia plumose. Phytochemistry 70:871–879

    Article  CAS  PubMed  Google Scholar 

  • Lorito M, Peterbauer C, Hayes CK, Harman GE (1994) Synergistic interaction between fungal cell wall degrading enzymes and different antifungal compounds enhances inhibition of spore germination. Microbiology 140:623–629

    Article  CAS  PubMed  Google Scholar 

  • Macedo MLR, Ribeiro SF, Taveira GB, Gomes VM, de Barros KM, Maria-Neto S (2016) Antimicrobial activity of ILTI, a Kunitz-type trypsin inhibitor from Inga laurina (SW.) Willd. Curr Microbiol 72:538–544

    Article  CAS  PubMed  Google Scholar 

  • Macedo MLR, Sá CM, Freire MGM, Parra JRP (2004) A Kunitz-type inhibitor of coleopteran proteases, isolated from Adenanthera pavonina L. Seeds and its effect on Callosobruchus maculatus. J Agr Food Chem 52:2533–2540

    Article  CAS  Google Scholar 

  • Migliolo L, Oliveira AS, Santos EA, Franco OL, Sales MP (2010) Structural and mechanistic insights into a novel non-competitive Kunitz trypsin inhibitor from Adenanthera pavonina L. Seeds with double activity toward serine-and cysteineproteinases. J Mol Graph Model 29:148–156

    Article  CAS  PubMed  Google Scholar 

  • Nawrot R, Barylski J, Nowicki G, Broniarczyk J, Buchwald W, Goździcka-Józefiak A (2014) Plant antimicrobial peptides. Folia Microbiol 59:181–196

    Article  CAS  Google Scholar 

  • Peng J, Black L (1976) Increased proteinase inhibitor activity in response to infection of resistant tomato plants by Phytophthora infestans. Phytopathology 66:958–963

    CAS  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  PubMed  Google Scholar 

  • Qu LJ, Chen J, Liu M, Pan N, Okamoto H, Lin Z, Li C, Li D, Wang J, Zhu G (2003) Molecular cloning and functional analysis of a novel type of Bowman-Birk inhibitor gene family in rice. Plant Physiol 133:560–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quilis J, López-García B, Meynard D, Guiderdoni E, San Segundo B (2014) Inducible expression of a fusion gene encoding two proteinase inhibitors leads to insect and pathogen resistance in transgenic rice. Plant Biotechnol J 12:367–377

    Article  CAS  PubMed  Google Scholar 

  • Ramos VS, Cabrera OG, Camargo ELO, Ambrósio AB, Vidal RO, Silva DS, Guimarães LC, Marangoni S, Parra JRP, Pereira GAG, Macedo MLR (2012) Molecular cloning and insecticidal effect of Inga laurina trypsin inhibitor on Diatraea saccharalis and Heliothis virescens. Comp Biochem Phys, Part C 156:148–158

    CAS  Google Scholar 

  • Richardson M (1991) Seed storage proteins: the enzyme inhibitors. In: Rogers JL (ed) Methods in plant biochemistry, amino acids, proteins and nucleic acids. Academic, New York, pp. 259–305

    Google Scholar 

  • Rivillas-Acevedo L, Soriano-Garcia M (2007) Antifungal activity of a protean extract from Amaranthus hypochondriacus seeds. J Mexican Chem Soc 51:136–140

    CAS  Google Scholar 

  • Ryan CA (2000) The systemin signaling pathway: differential activation of plant defensive genes. BBA-Protein Struct M 1477:112–121

    Article  CAS  Google Scholar 

  • Scorer CA, Clare JJ, McCombie WR, Romanos MA, Sreekrishna K (1994) Rapid selection using G418 of high copy number transformants of Pichia pastoris for high-level foreign gene expression. Nat Biotech 12:181–184

    Article  CAS  Google Scholar 

  • Sels J, Mathys J, De Coninck BM, Cammue BP, De Bolle MF (2008) Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Bioch 46:941–950

    Article  CAS  Google Scholar 

  • Silva RG, Vasconcelos IM, Acrísio Filho JUB, Carvalho AF, Souza TM, Gondim DM, Oliveira JT (2015) Castor bean cake contains a trypsin inhibitor that displays antifungal activity against Colletotrichum gloeosporioides and inhibits the midgut proteases of the dengue mosquito larvae. Ind Crop Prod 70:48–55

    Article  CAS  Google Scholar 

  • Silva W, Freire MGM, Parra JRP, Marangoni S, Macedo MLR (2012) Evaluation of the Adenanthera pavonina seed proteinase inhibitor (ApTI) as a bioinsecticidal tool with potential for the control of Diatraea saccharalis. Process Biochem 47:257–263

    Article  Google Scholar 

  • Solomon M, Belenghi B, Delledonne M, Menachem E, Levine A (1999) The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell 11:431–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Souza DD, Brandão-Costa RMP, Albuquerque WWC, Porto ALF (2016) Partial purification and characterization of a trypsin inhibitor isolated from Adenanthera pavonina L. Seeds. S Afr J Bot 104:30–34

    Article  CAS  Google Scholar 

  • Stirpe F (2004) Ribosome-inactivating proteins. Toxicon 44:371–383

    Article  CAS  PubMed  Google Scholar 

  • Tunlid A, Rosen S, Ek B, Rask L (1994) Purification and characterization of an extracellular serine protease from the nematode-trapping fungus Arthrobotrys oligospora. Microbiology 140:1687–1695

    Article  PubMed  Google Scholar 

  • Ussuf K, Laxmi N, Mitra R (2001) Proteinase inhibitors: plant-derived genes of insecticidal protein for developing insect-resistant transgenic plants. Curr Sci-Bangalore 80:847–853

    CAS  Google Scholar 

  • Vale N, Aguiar L, Gomes P (2014) Antimicrobial peptides: a new class of antimalarial drugs? Frontiers Pharmacol 5:275

    Article  Google Scholar 

  • Valueva TA, Mosolov VV (2004) Role of inhibitors of proteolytic enzymes in plant defense against phytopathogenic microorganisms. Biochemistry (Moscow) 69:1305–1309

  • Woloshuk CP, Meulenhoff JS, Sela-Buurlage M, van den Elzen PJ, Cornelissen BJ (1991) Pathogen-induced proteins with inhibitory activity toward Phytophthora infestans. Plant Cell 3:619–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Y, Peng Y, Luo M, Li D, Hou L, Pei Y (2007) Sequential amplification of flanking sequences by Y-shaped adaptor dependent extension using multiple templates. J Plant Physiol Mol Biol 33:85–90

    Google Scholar 

  • Xiao YH, Luo M, Fang WG, Luo K, Hou L, Luo X, Pei Y (2002) PCR walking in cotton genome using YADE method. Acta Genet Sin 29:62–66

    CAS  PubMed  Google Scholar 

  • Yang X, Li J, Wang X, Fang W, Bidochka MJ, She R, Xiao Y, Pei Y (2006) Psc-AFP, an antifungal protein with trypsin inhibitor activity from Psoralea corylifolia seeds. Peptides 27:1726–1731

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Xiao Y, Wang X, Pei Y (2007) Expression of a novel small antimicrobial protein from the seeds of motherwort (Leonurus japonicus) confers disease resistance in tobacco. Appl Environ Microb 73:939–946

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing -Yong Yang.

Ethics declarations

Funding

This work was supported by the National Basic Research Program of China (grant number 2014CB138701) and the National Natural Science Foundation of China (no. 40,103,112).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Xiu-Mei Luo and Cheng-Jian Xie have contributed equally to the work.

Electronic supplementary material

ESM 1

(PDF 174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, XM., Xie, CJ., Wang, D. et al. Psc-AFP from Psoralea corylifolia L. overexpressed in Pichia pastoris increases antimicrobial activity and enhances disease resistance of transgenic tobacco. Appl Microbiol Biotechnol 101, 1073–1084 (2017). https://doi.org/10.1007/s00253-016-7768-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7768-1

Keywords

Navigation