Skip to main content
Log in

Altered susceptibility to the bactericidal effect of photocatalytic oxidation by TiO2 is related to colistin resistance development in Acinetobacter baumannii

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Multidrug-resistant Acinetobacter baumannii is a well-documented pathogen associated with hospital-acquired infections. In addition to multidrug resistance, A. baumannii can also become resistant to colistin, the antibiotic treatment of last resort, by the loss of the lipopolysaccharide from its outer membrane. Here, we demonstrate that the development of colistin resistance also increases the resistance of A. baumannii to titanium dioxide (TiO2) photocatalysis. Both colistin-sensitive A. baumannii (CSAB) and colistin-resistant A. baumannii (CRAB) were inactivated by TiO2 when irradiated by ultraviolet A (UV-A). The resistance of CRAB to TiO2 photocatalysis was 1.5 times higher than that of CSAB, as determined by either culture assay or quantification of leaked proteins after photocatalysis (p < 0.05). The results of two-dimensional gel electrophoresis led to the speculation that the high resistance of CRAB may be associated with a lack of sensitive targets and oxidative enzymes. This hypothesis was confirmed by antimicrobial assays with 25 mM hydrogen peroxide (H2O2) and 1.07 mM sodium hypochlorite (NaClO). CRAB was significantly more resistant to H2O2 and NaClO treatment than CSAB (p < 0.01), consistent with the results of the TiO2 inactivation experiment. Therefore, the antibiotic resistance profiles of bacterial strains should be considered before the use of strains as indicators to represent sanitary quality after TiO2 photocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Cai Y, Chai D, Wang R, Liang B, Bai N (2012) Colistin resistance of Acinetobacter baumannii: clinical reports, mechanisms and antimicrobial strategies. J Antimicrob Chemother 67:1607–1615. doi:10.1093/jac/dks084

    Article  CAS  PubMed  Google Scholar 

  • Cannatelli A, Giani T, Antonelli A, Principe L, Luzzaro F, Rossolini GM (2016) First detection of the mcr-1 colistin resistance gene in Escherichia coli, Italy. Antimicrob Agents Chemother 60:3257–3258. doi:10.1128/aac.00246-16

    Article  PubMed  Google Scholar 

  • Chang HL, Tang CH, Hsu YM, Wan L, Chang YF, Lin CT, Tseng YR, Lin YJ, Sheu JJ, Lin CW, Chang YC, Ho MW, Lin CD, Ho CM, Lai CH (2009) Nosocomial outbreak of infection with multidrug-resistant Acinetobacter baumannii in a medical center in Taiwan. Infect Cont Hosp Ep 30:34–38. doi:10.1086/592704

    Article  Google Scholar 

  • Chen WJ, Tsai PJ, Chen YC (2008) Functional Fe3O4/TiO2 core/shell magnetic nanoparticles as photokilling agents for pathogenic bacteria. Small 4:485–491. doi:10.1002/smll.200701164

    Article  CAS  PubMed  Google Scholar 

  • Cheng CL, Sun DS, Chu WC, Tseng YH, Ho HC, Wang JB, Chung PH, Chen JH, Tsai PJ, Lin NT, Yu MS, Chang HH (2009) The effects of the bacterial interaction with visible-light responsive titania photocatalyst on the bactericidal performance. J Biomed Sci 16:7. doi:10.1186/1423-0127-16-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho M, Choi Y, Park H, Kim K, Woo GJ, Park J (2007) Titanium dioxide/UV photocatalytic disinfection in fresh carrots. J Food Prot 70:97–101

    CAS  PubMed  Google Scholar 

  • Clifford DP, Repine JE (1982) Hydrogen peroxide mediated killing of bacteria. Mol Cell Biochem 49:143–149

    Article  CAS  PubMed  Google Scholar 

  • Dunlop P, Byrne J, Manga N, Eggins B (2002) The photocatalytic removal of bacterial pollutants from drinking water. J Photochem Photobiol A 148:355–363

    Article  CAS  Google Scholar 

  • Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989

    Article  CAS  PubMed  Google Scholar 

  • Estrela C, Ribeiro RG, Estrela CR, Pécora JD, Sousa-Neto MD (2003) Antimicrobial effect of 2 % sodium hypochlorite and 2 % chlorhexidine tested by different methods. Braz Dent J 14:58–62

    PubMed  Google Scholar 

  • Falagas ME, Kasiakou SK, Saravolatz LD (2005) Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis 40:1333–1341

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Reyes M, Rodríguez-Falcón M, Chiva C, Pachón J, Andreu D, Rivas L (2009) The cost of resistance to colistin in Acinetobacter baumannii: a proteomic perspective. Proteomics 9:1632–1645

    Article  PubMed  Google Scholar 

  • Fiorentino A, Ferro G, Alferez MC, Polo-Lopez MI, Fernandez-Ibanez P, Rizzo L (2015) Inactivation and regrowth of multidrug resistant bacteria in urban wastewater after disinfection by solar-driven and chlorination processes. J Photochem Photobiol B 148:43–50. doi:10.1016/j.jphotobiol.2015.03.029

    Article  CAS  PubMed  Google Scholar 

  • Fontes B, Cattani Heimbecker AM, de Souza BG, Costa SF, van der Heijden IM, Levin AS, Rasslan S (2012) Effect of low-dose gaseous ozone on pathogenic bacteria. BMC Infect Dis 12:358. doi:10.1186/1471-2334-12-358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fournier PE, Vallenet D, Barbe V, Audic S, Ogata H, Poirel L, Richet H, Robert C, Mangenot S, Abergel C, Nordmann P, Weissenbach J, Raoult D, Claverie JM (2006) Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet 2:e7. doi:10.1371/journal.pgen.0020007

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaynes R, Edwards JR (2005) Overview of nosocomial infections caused by gram-negative bacilli. Clin Infect Dis 41:848–854. doi:10.1086/432803

    Article  PubMed  Google Scholar 

  • Gerrity D, Ryu H, Crittenden J, Abbaszadegan M (2008) Photocatalytic inactivation of viruses using titanium dioxide nanoparticles and low-pressure UV light. J Environ Sci Health Part A 43:1261–1270

    Article  CAS  Google Scholar 

  • Gogniat G, Dukan S (2007) TiO2 photocatalysis causes DNA damage via fenton reaction-generated hydroxyl radicals during the recovery period. Appl Environ Microbiol 73:7740–7743. doi:10.1128/AEM.01079-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh LL, Chang CY, Shyu HL, Tsou CA, Lo HH (2010) The inhibition effect of TiO2/Ag thin film on Acinetobacter baumannii. Adv Mater Res 123:272–275

    Article  Google Scholar 

  • Huang J-J, Hu H-Y, Wu Y-H, Wei B, Lu Y (2013) Effect of chlorination and ultraviolet disinfection on tetA-mediated tetracycline resistance of Escherichia coli. Chemosphere 90:2247–2253

    Article  CAS  PubMed  Google Scholar 

  • Jayol A, Nordmann P, Desroches M, Decousser JW, Poirel L (2016) Acquisition of broad-spectrum cephalosporin resistance leading to colistin resistance in Klebsiella pneumoniae. Antimicrob Agents Chemother 60:3199–3201. doi:10.1128/aac.00237-16

    Article  CAS  PubMed  Google Scholar 

  • Li J, Rayner CR, Nation RL, Owen RJ, Spelman D, Tan KE, Liolios L (2006) Heteroresistance to colistin in multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 50:2946–2950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linley E, Denyer SP, McDonnell G, Simons C, Maillard JY (2012) Use of hydrogen peroxide as a biocide: new consideration of its mechanisms of biocidal action. J Antimicrob Chemother 67:1589–1596. doi:10.1093/jac/dks129

    Article  CAS  PubMed  Google Scholar 

  • Liou JW, Gu MH, Chen YK, Chen WY, Chen YC, Tseng YH, Hung YJ, Chang HH (2011) Visible light responsive photocatalyst induces progressive and apical-terminus preferential damages on Escherichia coli surfaces. PLoS One 6:e19982. doi:10.1371/journal.pone.0019982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maness PC, Smolinski DM, Blake Z, Huang EJW, Jacoby WA (1999) Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65:4094–4098

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martro E, Hernandez A, Ariza J, Dominguez MA, Matas L, Argerich MJ, Martin R, Ausina V (2003) Assessment of Acinetobacter baumannii susceptibility to antiseptics and disinfectants. J Hosp Infect 55:39–46

    Article  CAS  PubMed  Google Scholar 

  • McCullagh C, Robertson JM, Bahnemann DW, Robertson PK (2007) The application of TiO2 photocatalysis for disinfection of water contaminated with pathogenic micro-organisms: a review. Res Chem Intermed 33:359–375

    Article  CAS  Google Scholar 

  • Meric M, Kasap M, Gacar G, Budak F, Dundar D, Kolayli F, Eroglu C, Vahaboglu H (2008) Emergence and spread of carbapenem-resistant Acinetobacter baumannii in a tertiary care hospital in Turkey. FEMS Microbiol Lett 282:214–218. doi:10.1111/j.1574-6968.2008.01129.x

    Article  CAS  PubMed  Google Scholar 

  • Moffatt JH, Harper M, Harrison P, Hale JD, Vinogradov E, Seemann T, Henry R, Crane B, Michael FS, Cox AD (2010) Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother 54:4971–4977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moffatt JH, Harper M, Mansell A, Crane B, Fitzsimons TC, Nation RL, Li J, Adler B, Boyce JD (2013) Lipopolysaccharide-deficient Acinetobacter baumannii shows altered signaling through host toll-like receptors and increased susceptibility to the host antimicrobial peptide LL-37. Infect Immun 81:684–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norton MD, Spilkia AJ, Godoy VG (2013) Antibiotic resistance acquired through a DNA damage-inducible response in Acinetobacter baumannii. J Bacteriol 195:1335–1345. doi:10.1128/jb.02176-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oka Y, Kim WC, Yoshida T, Hirashima T, Mouri H, Urade H, Itoh Y, Kubo T (2008) Efficacy of titanium dioxide photocatalyst for inhibition of bacterial colonization on percutaneous implants. J Biomed Mater Res B Appl Biomater 86:530–540

    Article  PubMed  Google Scholar 

  • Okpara AU, Maswoswe JJ (1994) Emergence of multidrug-resistant isolates of Acinetobacter baumannii. Am J Hosp Pharm 51:2671–2675

    CAS  PubMed  Google Scholar 

  • Poole K (2002) Mechanisms of bacterial biocide and antibiotic resistance. J Appl Microbiol 92:55S–64S

    Article  PubMed  Google Scholar 

  • Pournaras S, Poulou A, Dafopoulou K, Chabane YN, Kristo I, Makris D, Hardouin J, Cosette P, Tsakris A, Dé E (2014) Growth retardation, reduced invasiveness, and impaired colistin-mediated cell death associated with colistin resistance development in Acinetobacter baumannii. Antimicrob Agents Chemother 58:828–832

    Article  PubMed  PubMed Central  Google Scholar 

  • Russell AD, Tattawasart U, Maillard JY, Furr JR (1998) Possible link between bacterial resistance and use of antibiotics and biocides. Antimicrob Agents Chemother 42:2151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rutala WA, Stiegel MM, Sarubbi FA, Weber DJ (1997) Susceptibility of antibiotic-susceptible and antibiotic-resistant hospital bacteria to disinfectants. Infect Control Hosp Epidemiol 18:417–421

    Article  CAS  PubMed  Google Scholar 

  • Sampson TR, Liu X, Schroeder MR, Kraft CS, Burd EM, Weiss DS (2012) Rapid killing of Acinetobacter baumannii by polymyxins is mediated by a hydroxyl radical death pathway. Antimicrob Agents Chemother 56:5642–5649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sengstock DM, Thyagarajan R, Apalara J, Mira A, Chopra T, Kaye KS (2010) Multidrug-resistant Acinetobacter baumannii: an emerging pathogen among older adults in community hospitals and nursing homes. Clin Infect Dis 50:1611–1616. doi:10.1086/652759

    Article  CAS  PubMed  Google Scholar 

  • Siroy A, Cosette P, Seyer D, Lemaître-Guillier C, Vallenet D, Van Dorsselaer A, Boyer-Mariotte S, Jouenne T, Dé E (2006) Global comparison of the membrane subproteomes between a multidrug-resistant Acinetobacter baumannii strain and a reference strain. J Proteome Res 5:3385–3398

    Article  CAS  PubMed  Google Scholar 

  • Soares NC, Cabral MP, Parreira JR, Gayoso C, Barba MJ, Bou G (2009) 2-DE analysis indicates that Acinetobacter baumannii displays a robust and versatile metabolism. Proteome Sci 7:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Stickler DJ, Thomas B, Chawla JC (1981) Antiseptic and antibiotic resistance in gram-negative bacteria causing urinary tract infection in spinal cord injured patients. Paraplegia 19:50–58

    Article  CAS  PubMed  Google Scholar 

  • Suller MT, Russell AD (1999) Antibiotic and biocide resistance in methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococcus. J Hosp Infect 43:281–291

    Article  CAS  PubMed  Google Scholar 

  • Sunada K, Kikuchi Y, Hashimoto K, Fujishima A (1998) Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environ Sci Technol 32:726–728

    Article  CAS  Google Scholar 

  • Sunada K, Watanabe T, Hashimoto K (2003) Studies on photokilling of bacteria on TiO2 thin film. J Photochem Photobiol A 156:227–233

    Article  CAS  Google Scholar 

  • Tsai TM, Chang HH, Chang KC, Liu YL, Tseng CC (2010) A comparative study of the bactericidal effect of photocatalytic oxidation by TiO2 on antibiotic-resistant and antibiotic-sensitive bacteria. J Chem Technol Biotechnol 85:1642–1653

    Article  CAS  Google Scholar 

  • Tsai TT, Sung WP, Song W (2011) Identification of indoor airborne microorganisms and their disinfection with combined nano-Ag/TiO2 photocatalyst and ultraviolet light. Environ Eng Sci 28:635–642

  • Tseng CC, Hsiao PK, Chang KC, Cheng CC, Yiin LM, Hsieh CJ (2015) Detection of viable antibiotic-resistant/sensitive Acinetobacter baumannii in indoor air by propidium monoazide quantitative polymerase chain reaction. Indoor Air 25:475–487. doi:10.1111/ina.12165

    Article  CAS  PubMed  Google Scholar 

  • Villegas MV, Hartstein AI (2003) Acinetobacter outbreaks, 1977–2000. Infect Control Hosp Epidemiol 24:284–295. doi:10.1086/502205

    Article  PubMed  Google Scholar 

  • Wada T, Maeda S, Tamaru A, Imai S, Hase A, Kobayashi K (2004) Dual-probe assay for rapid detection of drug-resistant Mycobacterium tuberculosis by real-time PCR. J Clin Microbiol 42:5277–5285. doi:10.1128/JCM.42.11.5277-5285.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wisplinghoff H, Schmitt R, Wohrmann A, Stefanik D, Seifert H (2007) Resistance to disinfectants in epidemiologically defined clinical isolates of Acinetobacter baumannii. J Hosp Infect 66:174–181. doi:10.1016/j.jhin.2007.02.016

    Article  CAS  PubMed  Google Scholar 

  • Wong M-S, Sun D-S, Chang H-H (2010) Bactericidal performance of visible-light responsive titania photocatalyst with silver nanostructures. PLoS One 5:e10394

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong P, Hu J (2013) Inactivation/reactivation of antibiotic-resistant bacteria by a novel UVA/LED/TiO2 system. Water Res 47:4547–4555. doi:10.1016/j.watres.2013.04.056

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant MOST 103-2314-B-320-003-MY2 from the Ministry of Science and Technology, Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Chieh Tseng.

Ethics declarations

Funding

This study was funded by the Ministry of Science and Technology, Republic of China (MOST 103-2314-B-320-003-MY2).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Figure S1

(PDF 156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tseng, CC., Tsai, YH., Hu, A. et al. Altered susceptibility to the bactericidal effect of photocatalytic oxidation by TiO2 is related to colistin resistance development in Acinetobacter baumannii . Appl Microbiol Biotechnol 100, 8549–8561 (2016). https://doi.org/10.1007/s00253-016-7654-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7654-x

Keywords

Navigation