Skip to main content
Log in

Screening of bacteria for self-healing of concrete cracks and optimization of the microbial calcium precipitation process

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A novel high-throughput strategy was developed to determine the calcium precipitation activity (CPA) of mineralization bacteria used for self-healing of concrete cracks. A bacterial strain designated as H4 with the highest CPA of 94.8 % was screened and identified as a Bacillus species based on 16S rDNA sequence and phylogenetic tree analysis. Furthermore, the effects of certain influential factors on the microbial calcium precipitation process of H4 were evaluated. The results showed that lactate and nitrate are the best carbon and nitrogen sources, with optimal concentrations of approximately 25 and 18 mM, respectively. The H4 strain is able to maintain a high CPA in the pH range of 9.5–11.0, and a suitable initial spore concentration is 4.0 × 107 spores/ml. Moreover, an ambient Ca2+ concentration greater than 60 mM resulted in a serious adverse impact not only on the CPA but also on the growth of H4, suggesting that the maintenance of the Ca2+ concentration at a low level is necessary for microbial self-healing of concrete cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alghamdi HS, Bosco R, Both SK, Iafisco M, Leeuwenburgh SC, Jansen JA, van den Beucken JJ (2014) Synergistic effects of bisphosphonate and calcium phosphate nanoparticles on peri-implant bone responses in osteoporotic rats. Biomater 35:5482–5490

    Article  CAS  Google Scholar 

  • Bang SS, Lippert JJ, Yerra U, Mulukutla S, Ramakrishnan V (2010) Microbial calcite, a bio-based smart nanomaterial in concrete remediation. Int J Smart Nano Mater 1:28–39

    Article  CAS  Google Scholar 

  • Bentzon-Tilia M, Farnelid H, Jürgens K, Riemann L (2014) Cultivation and isolation of N2-fixing bacteria from suboxic waters in the Baltic Sea. FEMS Microbiol Ecol 88:358–371

    Article  CAS  PubMed  Google Scholar 

  • Chaudhry V, Nautiyal CS (2011) A high throughput method and culture medium for rapid screening of phosphate accumulating microorganisms. Bioresour Technol 102:8057–8062

    Article  CAS  PubMed  Google Scholar 

  • De Muynck W, De Belie N, Verstraete W (2010) Microbial carbonate precipitation in construction materials: a review. Ecol Eng 36:118–136

    Article  Google Scholar 

  • Dong BQ, Wang Y, Fang G, Han NX, Xing F, Lu Y (2015) Smart releasing behavior of a chemical self-healing microcapsule in the stimulated concrete pore solution. Cem Concr Comp 56:46–50

    Article  CAS  Google Scholar 

  • Douglas S, Beveridge TJ (1998) Mineral formation by bacteria in natural microbial communities. FEMS Microbiol Ecol 26:79–88

    Article  CAS  Google Scholar 

  • Ghosh S, Korza G, Maciejewski M, Setlow P (2015) Analysis of metabolism in dormant spores of Bacillus species by 31P nuclear magnetic resonance analysis of low-molecular-weight compounds. J Bacteriol 197:992–1001

    Article  PubMed  Google Scholar 

  • Hou W, Lian B, Zhang X (2011) CO2 mineralization induced by fungal nitrate assimilation. Bioresour Technol 102:1562–1566

    Article  CAS  PubMed  Google Scholar 

  • Jonkers HM, Thijssen A, Muyzer G, Copuroglu O, Schlangen E (2010) Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol Eng 36:230–235

    Article  Google Scholar 

  • Karagöl F, Demirboğa R, Kaygusuz MA, Yadollahi MM, Polat R (2013) The influence of calcium nitrate as antifreeze admixture on the compressive strength of concrete exposed to low temperatures. Cold Reg Sci Technol 89:30–35

    Article  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbial 62:716–721

    Article  CAS  Google Scholar 

  • Lee BD, Apel WA, Walton MR (2006) Calcium carbonate formation by Synechococcus sp. strain PCC 8806 and Synechococcus sp. strain PCC 8807. Bioresour Technol 97:2427–2434

    Article  CAS  PubMed  Google Scholar 

  • Li P, Qu W (2015) Bacteria for concrete surface treatment. In: Torgal FP, Labrincha JA, Diamanti MV, Yu CP, Lee HK (eds) Biotechnologies and biomimetics for civil engineering, 1st edn. Springer International Publishing, Switzerland, pp 325–358

  • Neelamegam P, Jamaludeen A, Rajendran A (2010) Analysis of calcium in milk using an embedded system. Sens & Instrumen Food Qual 4:119–125

    Article  Google Scholar 

  • Nejadnik MR, Yang X, Bongio M, Alghamdi HS, Van den Beucken JJ, Huysmans MC, Leeuwenburgh SC (2014) Self-healing hybrid nanocomposites consisting of bisphosphonated hyaluronan and calcium phosphate nanoparticles. Biomater 35:6918–6929

    Article  CAS  Google Scholar 

  • Okwadha G, Li J (2010) Optimum conditions for microbial carbonate precipitation. Chemosphere 81:1143–1148

    Article  CAS  PubMed  Google Scholar 

  • Pfennig N (1974) Rhodopseudomonas globiformis, sp. n., a new species of the Rhodospirillaceae. Arch Microbiol 100:197–206

    Article  CAS  Google Scholar 

  • Qian CX, Wang JY, Wang RX (2009) Corrosion protection of cement-based building materials by surface deposition of CaCO3 by Bacillus pasteurii. Mater Sci Eng: C 29:1273–1280

    Article  CAS  Google Scholar 

  • Qian CX, Wang RX, Cheng L, Wang JY (2010) Theory of microbial carbonate precipitation and its application in restoration of cement-based materials defects. Chin J Chem 28:847–857

    Article  CAS  Google Scholar 

  • Qian CX, Luo M, Pan QF, Li RY (2013) Mechanism of microbially induced calcite precipitation in self-healing concrete. J Chin Ceram Soc 41:620–626

    CAS  Google Scholar 

  • Qiu J, Tong QS, Yang EH (2014) Surface treatment of recycled concrete aggregates through microbial carbonate precipitation. Constr Build Mater 57:144–150

    Article  Google Scholar 

  • Ramirez-Peralta A, Stewart KAV, Thomas SK, Setlow B, Chen Z, Li YQ, Setlow P (2012) Effects of the SpoVT regulatory protein on the germination and germination protein levels of spores of Bacillus subtilis. J Bacteriol 194:3417–3425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sierra-Beltran MG, Jonkers HM, Schlangen E (2014) Characterization of sustainable bio-based mortar for concrete repair. Constr Build Mater 67:344–352

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Boil Evol 24:1596–1599

    Article  CAS  Google Scholar 

  • Van Tittelboom K, De Belie N, De Muynck W, Verstraete W (2010) Use of bacteria to repair cracks in concrete. Cem Concr Res 40:157–166

    Article  Google Scholar 

  • Wang JY, De Belie N, Verstraete W (2012) Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. J Ind Microbial Biotechnol 39:567–577

    Article  CAS  Google Scholar 

  • Wang JY, Snoeck D, Van Vlierberghe S, Verstraete W, De Belie N (2014a) Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete. Constr Build Mater 68:110–119

    Article  Google Scholar 

  • Wang JY, Soens H, Verstraete W, De Belie N (2014b) Self-healing concrete by use of microencapsulated bacterial spores. Cem Concr Res 56:139–152

    Article  CAS  Google Scholar 

  • Wang JY, Dewanckele J, Cnudde V, Van Vlierberghe S, Verstraete W, De Belie N (2014c) X-ray computed tomography proof of bacterial-based self-healing in concrete. Cem Concr Comp 53:289–304

    Article  CAS  Google Scholar 

  • Wiktor V, Jonkers HM (2011) Quantification of crack-healing in novel bacteria-basedself-healing concrete. Cem Concr Comp 33:763–770

    Article  CAS  Google Scholar 

  • Xu J, Yao W (2014) Multiscale mechanical quantification of self-healing concrete incorporating non-ureolytic bacteria-based healing agent. Cem Concr Res 64:1–10

    Article  CAS  Google Scholar 

  • Xu J, Yao W, Jiang Z (2013) Non-ureolytic bacterial carbonate precipitation as a surface treatment strategy on cementitious materials. J Mater Civil Eng 26(5):983–991

    Article  Google Scholar 

  • Ziegler A (2008) The cationic composition and pH in the moulting fluid of Porcellio scaber (Crustacea, Isopoda) during calcium carbonate deposit formation and resorption. J Comp Physiol B 178:67–76

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by National Natural Science Foundation of China (No. 51120185002, No. 51578339) and American Journal Experts for English improvement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X. Deng or F. Xing.

Ethics declarations

All of the authors of this article (J.L. Zhang, R.S. Wu, Y.M. Li, J.Y. Zhong, X. Deng, B. Liu, N.X. Han and F. Xing) declare that they have no conflicts of interest. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J.L., Wu, R.S., Li, Y.M. et al. Screening of bacteria for self-healing of concrete cracks and optimization of the microbial calcium precipitation process. Appl Microbiol Biotechnol 100, 6661–6670 (2016). https://doi.org/10.1007/s00253-016-7382-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7382-2

Keywords

Navigation