Skip to main content
Log in

Changes in the soil microbial community after reductive soil disinfestation and cucumber seedling cultivation

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Reductive soil disinfestation (RSD) has been proven to be an effective and environmentally friendly way to control many soilborne pathogens and diseases. In this study, the RSDs using ethanol (Et-RSD) and alfalfa (Al-RSD) as organic carbons were performed in a Rhizoctonia solani-infected soil, and the dissimilarities of microbial communities during the RSDs and after planting two seasons of cucumber seedlings in the RSDs-treated soil were respectively investigated by MiSeq pyrosequencing. The results showed that, as for bacteria, Coprococcus, Flavisolibacter, Rhodanobacter, Symbiobacterium, and UC-Ruminococcaceae became the dominant bacterial genera at the end of Al-RSD. In contrast, Et-RSD soil involved more bacteria belonging to Firmicutes, such as Sedimentibacter, UC-Gracilibacteraceae, and Desulfosporosinus. For fungi, Chaetomium significantly increased at the end of RSDs, while Rhizoctonia and Aspergillus significantly decreased. After planting two seasons of cucumber seedlings, those bacteria belonging to Firmicutes significantly decreased, but Lysobacter and Rhodanobacter belonging to the phylum Proteobacteria as well as UC-Sordariales and Humicola belonging to Ascomycota alternatively increased in Al- and Et-RSD-treated soils. Besides, some nitrification, denitrification, and nitrogen fixation genes were apparently increased in the RSD-treated soils, but the effect was more profound in Al-RSD than Et-RSD. Overall, Et-RSD could induced more antagonists belonging to Firmicutes under anaerobic condition, whereas Al-RSD could continuously stimulate some functional microorganisms (Lysobacter and Rhodanobacter) and further improve nitrogen transformation activities in the soil at the coming cropping season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abad LR, D’Urzo MP, Liu D, Narasimhan ML, Reuveni M, Zhu JK, Niu X, Singh NK, Hasegawa PM, Bressan RA (1996) Antifungal activity of tobacco osmotin has specificity and involves plasma membrane permeabilization. Plant Sci 118:11–23

    Article  CAS  Google Scholar 

  • Baraker G, Fesefeldt A, Witzel KP (1998) Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl Environ Microbiol 64:3769–3775

    Google Scholar 

  • Barrentine WL, Edwards CJ, Harwig EE (1976) Screening soybeans for tolerance to metribuzin. Agron J 68:351–353

    Article  Google Scholar 

  • Biddle A, Stewart L, Blanchard J, Leschine S (2013) Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities. Diversity 5:627–640

    Article  Google Scholar 

  • Blok WJ, Lamers JG, Termorshuizen AJ, Bollen GJ (2000) Control of soilborne plant pathogens by incorporating fresh organic amendments followed by tarping. Phytopathology 90:253–259

    Article  CAS  PubMed  Google Scholar 

  • Boone DR, Liu Y, Zhao Z, Balkwill DL, Drake GR, Stevens TO, Aldrich HC (1995) Bacillus infernus sp. nov., an Fe(III)- and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. Int J Syst Bacteriol 45:441–448

    Article  CAS  PubMed  Google Scholar 

  • Breitenstein A (2002) Reclassification of Clostridium hydroxybenzoicum as Sedimentibacter hydroxybenzoicus gen. nov., comb. nov., and description of Sedimentibacter saalensis sp. nov. Int J Syst Evol Micr 52:801–807

    CAS  Google Scholar 

  • Bremner JM (1960) Determination of nitrogen in soil by the Kjeldahl method. J Agr Sci 55:11–33

    Article  CAS  Google Scholar 

  • Bremner JM, Jenkinson DS (1960) Determination of organic carbon in soil. oxidation by bichromate of organic matter in soil and plant materials. J Soil Sci 11:394–402

    Article  CAS  Google Scholar 

  • Butler DM, Rosskopf EN, Kokalis-Burelle N, Albano JP, Muramoto J, Shennan C (2012) Exploring warm-season cover crops as carbon sources for anaerobic soil disinfestation (ASD). Plant Soil 355:149–165

    Article  CAS  Google Scholar 

  • Butler DM, Kokalis-Burelle N, Albano JP, McCollum TG, Muramoto J, Shennan C, Rosskopf EN (2014) Anaerobic soil disinfestation (ASD) combined with soil solarization as a methyl bromide alternative: vegetable crop performance and soil nutrient dynamics. Plant Soil 378:365–381

    Article  CAS  Google Scholar 

  • Cao ZH, Huang JF, Zhang CS, Li AF (2004) Soil quality evolution after land use change from paddy soil to vegetable land. Environ Geochem Health 26:97–103

    Article  PubMed  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claesson MJ, O’Sullivan O, Wang Q, Nikkilä J, Marchesi JR, Smidt H, de Vos WM, Ross RP, O’Toole PW (2009) Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS One 4:e6669

    Article  PubMed  PubMed Central  Google Scholar 

  • Daguerre Y, Siegel K, Edel-Hermann V, Steinberg C (2014) Fungal proteins and genes associated with biocontrol mechanisms of soil-borne pathogens: a review. Fungal Biol Rev 28:97–125

    Article  Google Scholar 

  • De Clercq D, Van Trappen S, Cleenwerck I, Ceustermans A, Swings J, Coosemans J, Ryckeboer J (2006) Rhodanobacter spathiphylli sp. nov., a gammaproteobacterium isolated from the roots of spathiphyllum plants grown in a compost-amended potting mix. Int J Syst Evol Microbiol 56:1755–1759

    Article  PubMed  Google Scholar 

  • Deacon JW, Berry LA (1993) Biocontrol of soil-borne plant pathogens: concepts and their application. Pestic Sci 37:417–426

    Article  Google Scholar 

  • Dineen SM, Aranda R, Anders DL, Robertson JM (2010) An evaluation of commercial DNA extraction kits for the isolation of bacterial spore DNA from soil. J Appl Microbiol 109:1886–1896

    Article  CAS  PubMed  Google Scholar 

  • Du J, Singh H, Ngo HT, Won K, Kim KY, Yi TH (2015) Lysobacter tyrosinelyticus sp. nov. isolated from gyeryongsan national park soil. J Microbiol 53:365–370

    Article  CAS  PubMed  Google Scholar 

  • Ducey TF, Vanotti MB, Shriner AD, Szogi AA, Ellison AQ (2010) Characterization of a microbial community capable of nitrification at cold temperature. Bioresour Technol 101:491–500

    Article  CAS  PubMed  Google Scholar 

  • Dutta BK (1981) Studies on some fungi isolated from the rhizosphere of tomato plants and the consequent prospect for the control of Verticillium wilt. Plant Soil 63:209–216

    Article  Google Scholar 

  • Eapen SJ, Beena B, Ramana KV (2005) Tropical soil microflora of spice-based cropping systems as potential antagonists of root-knot nematodes. J Invertebr Pathol 88:218–225

    Article  PubMed  Google Scholar 

  • Food and Agriculture Organization (2010) FAO statistical yearbook 2010. United Nations, Rome http://www.fao.org/docrep/015/am081m/PDF/am081m00b.pdf

    Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci U S A 102:14683–14688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamliel A, Austerweil M, Kritzman G (2000) Non-chemical approach to soilborne pest management-organic amendments. Crop Prot 19:847–853

    Article  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Goud J-KC, Termorshuizen AJ, Blok WJ, van Bruggen AHC (2004) Long-term effect of biological soil disinfestation on Verticillium Wilt. Plant Dis 88:688–694

    Article  Google Scholar 

  • Hakulinen N, Turunen O, Janis J, Leisola M, Rouvinen J (2003) Three-dimensional structures of thermophilic beta-1,4-xylanases from Chaetomium thermophilum and Nonomuraea flexuosa. Comparison of twelve xylanases in relation to their thermal stability. Eur J Biochem 270:1399–1412

    Article  CAS  PubMed  Google Scholar 

  • Holdeman L, Moore W (1974) New genus, Coprococcus, twelve new species, and emended descriptions of four previously described species of bacteria from human feces. Int J Syst Bacteriol 24:260–277

    Article  Google Scholar 

  • Huang X, Chen L, Ran W, Shen Q, Yang X (2011) Trichoderma harzianum strain SQR-T37 and its bio-organic fertilizer could control Rhizoctonia solani damping-off disease in cucumber seedlings mainly by the mycoparasitism. Appl Microbiol Biotechnol 91:741–755

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Liu L, Wen T, Zhu R, Zhang J, Cai Z (2015a) Illumina MiSeq investigations on the changes of microbial community in the Fusarium oxysporum f. sp. cubense infected soil during and after reductive soil disinfestation. Microbiol Res 181:33–42

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Wen T, Zhang J, Meng L, Zhu T, Cai Z (2015b) Toxic organic acids produced in biological soil disinfestation mainly caused the suppression of Fusarium oxysporum f. sp. cubense. BioControl 60:113–124

    Article  CAS  Google Scholar 

  • Knudsen IMB, Hockenhull J, Jensen DF (1995) Biocontrol of seedling diseases of barley and wheat caused by Fusarium culmorum and Bipolaris sorokiniana: effects of selected fungal antagonists on growth and yield components. Plant Pathol 44:467–477

    Article  Google Scholar 

  • Kommedahl T, Chang Mew I (1975) Biocontrol of corn root infection in the field by seed treatment with antagonists. Phytopathology 65:296–300

    Article  CAS  Google Scholar 

  • Kyselkova M, Kopecky J, Frapolli M, Defago G, Sagova-Mareckova M, Grundmann GL, Moenne-Loccoz Y (2009) Comparison of rhizobacterial community composition in soil suppressive or conducive to tobacco black root rot disease. ISME J 3:1127–1138

    Article  PubMed  Google Scholar 

  • Li X, Yn Z, Ding C, Jia Z, He Z, Zhang T, Wang X (2015) Declined soil suppressiveness to Fusarium oxysporum by rhizosphere microflora of cotton in soil sickness. Biol Fert Soils 51:935–946

    Article  Google Scholar 

  • Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Momma N (2008) Biological soil disinfestation (BSD) of soilborne pathogens and its possible mechanisms. Jarq-Jpn Agr Res Q 42:7–12

    Article  CAS  Google Scholar 

  • Momma N, Kobara Y, Momma M (2011) Fe2+ and Mn2+, potential agents to induce suppression of Fusarium oxysporum for biological soil disinfestation. J Gen Plant Pathol 77:331–335

    Article  CAS  Google Scholar 

  • Momma N, Kobara Y, Uematsu S, Kita N, Shinmura A (2013) Development of biological soil disinfestations in Japan. Appl Microbiol Biotechnol 97:3801–3809

    Article  CAS  PubMed  Google Scholar 

  • Momma N, Momma M, Kobara Y (2010) Biological soil disinfestation using ethanol: effect on Fusarium oxysporum f. sp. lycopersici and soil microorganisms. J Gen Plant Pathol 76:336–344

    Article  CAS  Google Scholar 

  • Mowlick S, Inoue T, Takehara T, Kaku N, Ueki K, Ueki A (2013) Changes and recovery of soil bacterial communities influenced by biological soil disinfestation as compared with chloropicrin-treatment. AMB Express 3:46–58

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogawa M, Kitagawa M, Tanaka H, Ueda K, Watsuji T, Beppu T, Kondo A, Kawachi R, Oku T, Nishio T (2006) A β-N-acetylhexosaminidase from Symbiobacterium thermophilum; gene cloning, overexpression, purification and characterization. Enzyme Microb Tech 38:457–464

    Article  CAS  Google Scholar 

  • Papirio S, Zou G, Ylinen A, Di Capua F, Pirozzi F, Puhakka JA (2014) Effect of arsenic on nitrification of simulated mining water. Bioresour Technol 164:149–154

    Article  CAS  PubMed  Google Scholar 

  • Perez-Garcia A, Romero D, de Vicente A (2011) Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr Opin Biotech 22:187–193

    Article  CAS  PubMed  Google Scholar 

  • Pietro AD, Gut-Rella M, Pachlatko JP, Schwinn FJ (1992) Role of antibiotics produced by Chaetomium globosum in biocontrol of Pythium ultimum, a causal agent of damping-off. Phytopathology 82:131–135

    Article  Google Scholar 

  • Poly F, Ranjard L, Nazaret S, Gourbiere F, Monrozier LJ (2001) Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties. Appl Environ Microbiol 67:2255–2262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prakash O, Green SJ, Jasrotia P, Overholt WA, Canion A, Watson DB, Brooks SC, Kostka JE (2012) Rhodanobacter denitrificans sp. nov., isolated from nitrate-rich zones of a contaminated aquifer. Int J Syst Evol Microbiol 62:2457–2462

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues-Kabana R, Jordan JW, Hollis JP (1965) Nematodes: biological control in rice fields: role of hydrogen sulfide. Science 148:524–526

    Article  Google Scholar 

  • Rosch C, Bothe H (2005) Improved assessment of denitrifying, N2-fixing, and total-community bacteria by terminal restriction fragment length polymorphism analysis using multiple restriction enzymes. Appl Environ Microbiol 71:2026–2035

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosskopf EN, Serrano-Pérez P, Hong J, Shrestha U, del Carmen Rodríguez-Molina M, Martin K, Kokalis-Burelle N, Shennan C, Muramoto J, Butler D (2015) Anaerobic soil disinfestation and soilborne pest management. In: Meghavansi MK, Varma A (eds) Organic amendments and soil suppressiveness in plant disease management. Springer International Publishing, Cham, Swatzerland, pp. 277–305

    Chapter  Google Scholar 

  • Runia WT, Thoden TC, Molendijk LPG, van den Berg W, Termorshuizen AJ, Streminska MA, van der Wurff AWG, Feil H, Meints H (2014) Unravelling the mechanism of pathogen inactivation during anaerobic soil disinfestation. Acta Horticult 1044:177–193

    Article  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Harmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi W, Yao J, Yan F (2009) Vegetable cultivation under greenhouse conditions leads to rapid accumulation of nutrients, acidification and salinity of soils and groundwater contamination in South-Eastern China. Nutr Cycl Agroecosyst 83:73–84

    Article  CAS  Google Scholar 

  • Shinmura A (2000) Causal agent and control of root rot of welsh onion. PSJ Soilborne Dis Work Rep 20:133–143

    Google Scholar 

  • Shinmura A (2004) Principle and effect of soil sterilization method by reducing redox potential of soil. PSJ Soilborne Dis Work Rep 22:2–12

    Google Scholar 

  • Spring S, Rosenzweig F (2006) The genera Desulfitobacterium and Desulfosporosinus: taxonomy. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes: a handbook on the biology of bacteria, 3rd edn. Springer, Singapore, pp. 771–786

    Chapter  Google Scholar 

  • Stackebrandt E (2014) The family Gracilibacteraceae and transfer of the genus Lutispora into Gracilibacteraceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes. Springer, New York, pp. 149–151

    Google Scholar 

  • Stephen JR, Kowalchuk GA, Bruns MV, Mccaig AE, Phillips CJ, Embley TM, Prosser JI (1998) Analysis of β-subgroup proteobacterial ammonia oxidizer populations in soil by denaturing gradient gel electrophoresis analysis and hierarchical phylogenetic probing. Appl Environ Microbiol 64:2958–2965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzui T, Makino T (1980) Occurrence of Aspergillus crown rot of peanut caused by Aspergillus niger van Tieghem. Ann Phytopath Soc Japan 46:46–48

    Article  Google Scholar 

  • Tenuta M, Lazarovits G (2002) Ammonia and nitrous acid from nitrogenous amendments kill the microsclerotia of Verticillium dahliae. Phytopathology 92:255–264

    Article  CAS  PubMed  Google Scholar 

  • Throback IN, Enwall K, Jarvis A, Hallin S (2004) Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol 49:401–417

  • Vannacci G, Harman GE (1987) Biocontrol of seed-borne Alternaria raphani and A. brassicicola. Can J Microbiol 33:850–856

    Article  Google Scholar 

  • Walther D, Gindrat D (1998) Biological control of damping-off of sugarbeet and cotton with Chaetomium globosum or a fluorescent Pseudomonas sp. Can J Microbiol 34:631–637

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, Inc., New York, pp. 315–322

    Google Scholar 

  • Xu L, Ravnskov S, Larsen J, Nilsson RH, Nicolaisen M (2012) Soil fungal community structure along a soil health gradient in pea fields examined using deep amplicon sequencing. Soil Biol Biochem 46:26–32

    Article  CAS  Google Scholar 

  • Yoon MH, Im WT (2007) Flavisolibacter ginsengiterrae gen. nov., sp. nov. and Flavisolibacter ginsengisoli sp. nov., isolated from ginseng cultivating soil. Int J Syst Evol Micr 57:1834–1839

    Article  CAS  Google Scholar 

  • Zhang S, Raza W, Yang X, Hu J, Huang Q, Xu Y, Liu X, Ran W, Shen Q (2008) Control of Fusarium wilt disease of cucumber plants with the application of a bioorganic fertilizer. Biol Fert Soils 44:1073–1080

    Article  Google Scholar 

  • Zhao J, Ni T, Li Y, Xiong W, Ran W, Shen B, Shen Q, Zhang R (2014) Responses of bacterial communities in arable soils in a rice-wheat cropping system to different fertilizer regimes and sampling times. PLoS one 9:e5301

    Google Scholar 

  • Zhu T, Dang Q, Zhang J, Müller C, Cai Z (2014) Reductive soil disinfestation (RSD) alters gross N transformation rates and reduces NO and N2O emissions in degraded vegetable soils. Plant Soil 382:269–280

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (Grant No. 41301335), the Specialized Research Fund for the Doctoral Program of Higher Education of China (20133207120018), the Natural Science Foundation of Jiangsu Province (BK20140062), Outstanding innovation team in colleges and universities in Jiangsu Province and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zucong Cai.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Liu, L., Wen, T. et al. Changes in the soil microbial community after reductive soil disinfestation and cucumber seedling cultivation. Appl Microbiol Biotechnol 100, 5581–5593 (2016). https://doi.org/10.1007/s00253-016-7362-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7362-6

Keywords

Navigation