Skip to main content
Log in

Deletion of poxB, pta, and ackA improves 1,3-propanediol production by Klebsiella pneumoniae

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

To date, few studies have focused on reducing the toxic by-product acetate during 1,3-propanediol production by Klebsiella pneumoniae. In this study, the effects of deleting the poxB, pta, and ackA genes, which are involved in the two main acetate synthesis pathways, on cell growth and 1,3-propanediol production were investigated. Although acetate synthesis via pyruvate oxidase (PoxB, encoded by poxB) generally seems unnecessary and wasteful, PoxB was shown to play an important role in K. pneumoniae. Deletion of poxB severely inhibited cell growth, and the poxB mutant exhibited an anomalously high accumulation of acetate in aerobic cultures and failed to produce an endogenous supply of carbon dioxide (CO2) in anaerobic cultures. It is interesting that both the aerobic and anaerobic growth defects of the poxB mutant were corrected by further deleting pta and ackA, which blocked the other main acetate synthesis pathway. The poxB-pta-ackA mutant excreted less acetate and showed an excellent ability to produce 1,3-propandiol. The final 1,3-propanediol yield and concentration in a 2-L fed-batch fermentation reached 0.66 (mol/mol) and 76.8 g/L, respectively, which were 16 and 15 % greater, respectively, than those of the parent strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Hamid AM, Attwood MM, Guest JR (2001) Pyruvate oxidase contributes to the aerobic growth efficiency of Escherichia coli. Microbiology 147:1483–1498

    Article  PubMed  CAS  Google Scholar 

  • Ashok S, Raj SM, Rathnasingh C, Park S (2011) Development of recombinant Klebsiella pneumoniae delta dhaT strain for the co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol. Appl Microbiol Biotechnol 90:1253–1265

    Article  PubMed  CAS  Google Scholar 

  • Celinska E (2010) Debottlenecking the 1,3-propanediol pathway by metabolic engineering. Biotechnol Adv 28:519–530

    Article  PubMed  CAS  Google Scholar 

  • Celinska E (2012) Klebsiella spp as a 1, 3-propanediol producer: the metabolic engineering approach. Crit Rev Biotechnol 32:274–288

    Article  PubMed  CAS  Google Scholar 

  • Chang DE, Shin S, Rhee JS, Pan JG (1999) Acetate metabolism in a pta mutant of Escherichia coli W3110: importance of maintaining acetyl coenzyme A flux for growth and survival. J Bacteriol 181:6656–6663

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chang YY, Cronan Jr JE (1983) Genetic and biochemical analyses of Escherichia coli strains having a mutation in the structural gene (poxB) for pyruvate oxidase. J Bacteriol 154:756–762

  • Chang YY, Wang AY, Cronan Jr JE (1994) Expression of Escherichia coli pyruvate oxidase (PoxB) depends on the sigma factor encoded by the rpoS(katF) gene. Mol Microbiol 11:1019–1028

  • Chen X, Zhang DJ, Qi WT, Gao SJ, Xiu ZL, Xu P (2003) Microbial fed-batch production of 1,3-propanediol by Klebsiella pneumoniae under micro-aerobic conditions. Appl Microbiol Biotechnol 63:143–146

    Article  PubMed  CAS  Google Scholar 

  • Cui YL, Zhou JJ, Gao LR, Zhu CQ, Jiang X, Fu SL, Gong H (2014) Utilization of excess NADH in 2,3-butanediol-deficient Klebsiella pneumoniae for 1,3-propanediol production. J Appl Microbiol 117:690–698

    Article  PubMed  CAS  Google Scholar 

  • De Mey M, De Maeseneire S, Soetaert W, Vandamme E (2007) Minimizing acetate formation in E. coli fermentations. J Ind Microbiol Biotechnol 34:689–700

    Article  PubMed  CAS  Google Scholar 

  • Dharmadi Y, Murarka A, Gonzalez R (2006) Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioeng 94:821–829

    Article  PubMed  CAS  Google Scholar 

  • Dittrich CR, Vadali RV, Bennett GN, San KY (2005) Redistribution of metabolic fluxes in the central aerobic metabolic pathway of E. coli mutant strains with deletion of the ackA-pta and poxB pathways for the synthesis of isoamyl acetate. Biotechnol Prog 21:627–631

    Article  PubMed  CAS  Google Scholar 

  • Durgapal M, Kumar V, Yang TH, Lee HJ, Seung D, Park S (2014) Production of 1,3-propanediol from glycerol using the newly isolated Klebsiella pneumoniae J2B. Bioresour Technol 159:223–231

    Article  PubMed  CAS  Google Scholar 

  • Gao L, Jiang X, Fu S, Gong H (2014) In silico identification of potential virulence genes in 1,3-propanediol producer Klebsiella pneumoniae. J Biotechnol 189:9–14

    Article  PubMed  CAS  Google Scholar 

  • Grabau C, Cronan Jr JE (1984) Molecular cloning of the gene (poxB) encoding the pyruvate oxidase of Escherichia coli, a lipid-activated enzyme. J Bacteriol 160:1088–1092

  • Grahame DA, Kang TS, Khan NH, Tanaka T (2013) Alkaline conditions stimulate the production of 1,3-propanediol in Lactobacillus panis PM1 through shifting metabolic pathways. World J Microbiol Biotechnol 29:1207–1215

    Article  PubMed  CAS  Google Scholar 

  • He L, Zhao X, Cheng K, Sun Y, Liu D (2013) Kinetic modeling of fermentative production of 1, 3-propanediol by Klebsiella pneumoniae HR526 with consideration of multiple product inhibitions. Appl Biochem Biotechnol 169:312–326

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Li Z, Shimizu K, Ye Q (2012) Simultaneous production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol by a recombinant strain of Klebsiella pneumoniae. Bioresour Technol 103:351–359

    Article  PubMed  CAS  Google Scholar 

  • Khan NH, Kang TS, Grahame DA, Haakensen MC, Ratanapariyanuch K, Reaney MJ, Korber DR, Tanaka T (2013) Isolation and characterization of novel 1,3-propanediol-producing Lactobacillus panis PM1 from bioethanol thin stillage. Appl Microbiol Biotechnol 97:417–428

    Article  PubMed  CAS  Google Scholar 

  • Kozliak EI, Fuchs JA, Guilloton MB, Anderson PM (1995) Role of bicarbonate/CO2 in the inhibition of Escherichia coli growth by cyanate. J Bacteriol 177:3213–3219

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kumar V, Sankaranarayanan M, Durgapal M, Zhou S, Ko Y, Ashok S, Sarkar R, Park S (2013) Simultaneous production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol using resting cells of the lactate dehydrogenase-deficient recombinant Klebsiella pneumoniae overexpressing an aldehyde dehydrogenase. Bioresour Technol 135:555–563

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Sankaranarayanan M, Jae KE, Durgapal M, Ashok S, Ko Y, Sarkar R, Park S (2012) Co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol using resting cells of recombinant Klebsiella pneumoniae J2B strain overexpressing aldehyde dehydrogenase. Appl Microbiol Biotechnol 96:373–383

    Article  PubMed  CAS  Google Scholar 

  • Kumari S, Simel EJ, Wolfe AJ (2000) sigma(70) is the principal sigma factor responsible for transcription of acs, which encodes acetyl coenzyme A synthetase in Escherichia coli. J Bacteriol 182:551–554

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lee SM, Hong WK, Heo SY, Park JM, Jung YR, Oh BR, Joe MH, Seo JW, Kim CH (2014) Enhancement of 1,3-propanediol production by expression of pyruvate decarboxylase and aldehyde dehydrogenase from Zymomonas mobilis in the acetolactate-synthase-deficient mutant of Klebsiella pneumoniae. J Ind Microbiol Biotechnol 41:1259–1266

    Article  PubMed  CAS  Google Scholar 

  • Li M, Yao S, Shimizu K (2006) Effect of poxB gene knockout on metabolism in Escherichia coli based on growth characteristics and enzyme activities. World J Microbiol Biotechnol 23:573–580

    Article  CAS  Google Scholar 

  • Li M, Zhang X, Agrawal A, San KY (2012) Effect of acetate formation pathway and long chain fatty acid CoA-ligase on the free fatty acid production in E. coli expressing acy-ACP thioesterase from Ricinus communis. Metab Eng 14:380–387

    Article  PubMed  CAS  Google Scholar 

  • Liao JC, Hou SY, Chao YP (1996) Pathway analysis, engineering, and physiological considerations for redirecting central metabolism. Biotechnol Bioeng 52:129–140

    Article  PubMed  CAS  Google Scholar 

  • Lu S, Han Y, Duan X, Luo F, Zhu L, Li S, Huang H (2013) Cell morphology variations of Klebsiella pneumoniae induced by acetate stress using biomimetic vesicle assay. Appl Biochem Biotechnol 171:731–743

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Gomez K, Flores N, Castaneda HM, Martinez-Batallar G, Hernandez-Chavez G, Ramirez OT, Gosset G, Encarnacion S, Bolivar F (2012) New insights into Escherichia coli metabolism: carbon scavenging, acetate metabolism and carbon recycling responses during growth on glycerol. Microb Cell Factories 11:46

    Article  CAS  Google Scholar 

  • Merlin C, Masters M, McAteer S, Coulson A (2003) Why is carbonic anhydrase essential to Escherichia coli? J Bacteriol 185:6415–6424

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Murarka A, Clomburg JM, Moran S, Shanks JV, Gonzalez R (2010) Metabolic analysis of wild-type Escherichia coli and a pyruvate dehydrogenase complex (PDHC)-deficient derivative reveals the role of PDHC in the fermentative metabolism of glucose. J Biol Chem 285:31548–31558

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Peebo K, Valgepea K, Nahku R, Riis G, Oun M, Adamberg K, Vilu R (2014) Coordinated activation of PTA-ACS and TCA cycles strongly reduces overflow metabolism of acetate in Escherichia coli. Appl Microbiol Biotechnol 98:5131–5143

    Article  PubMed  CAS  Google Scholar 

  • Petrov K, Petrova P (2009) High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31. Appl Microbiol Biotechnol 84:659–665

    Article  PubMed  CAS  Google Scholar 

  • Phue JN, Lee SJ, Kaufman JB, Negrete A, Shiloach J (2010) Acetate accumulation through alternative metabolic pathways in ackA pta poxB triple mutant in E. coli B (BL21). Biotechnol Lett 32:1897–1903

    Article  PubMed  CAS  Google Scholar 

  • Phue JN, Shiloach J (2004) Transcription levels of key metabolic genes are the cause for different glucose utilization pathways in E. coli B (BL21) and E. coli K (JM109). J Biotechnol 109:21–30

    Article  PubMed  CAS  Google Scholar 

  • Repaske R, Clayton MA (1978) Control of Escherichia coli growth by CO2. J Bacteriol 135:1162–1164

    PubMed Central  PubMed  CAS  Google Scholar 

  • Seo MY, Seo JW, Heo SY, Baek JO, Rairakhwada D, Oh BR, Seo PS, Choi MH, Kim CH (2009) Elimination of by-product formation during production of 1,3-propanediol in Klebsiella pneumoniae by inactivation of glycerol oxidative pathway. Appl Microbiol Biotechnol 84:527–534

    Article  PubMed  CAS  Google Scholar 

  • Skraly FA, Lytle BL, Cameron DC (1998) Construction and characterization of a 1,3-propanediol operon. Appl Environ Microbiol 64:98–105

    PubMed Central  PubMed  CAS  Google Scholar 

  • Szymanowska-Powalowska D, Bialas W (2014) Scale-up of anaerobic 1,3-propanediol production by Clostridium butyricum DSP1 from crude glycerol. BMC Microbiol 14:45

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Szymanowska-Powalowska D, Kubiak P (2015) Effect of 1,3-propanediol, organic acids, and ethanol on growth and metabolism of Clostridium butyricum DSP1. Appl Microbiol Biotechnol 99:3179–3189

    Article  PubMed  CAS  Google Scholar 

  • Tang X, Tan Y, Zhu H, Zhao K, Shen W (2009) Microbial conversion of glycerol to 1,3-propanediol by an engineered strain of Escherichia coli. Appl Environ Microbiol 75:1628–1634

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tran KT, Maeda T, Wood TK (2014) Metabolic engineering of Escherichia coli to enhance hydrogen production from glycerol. Appl Microbiol Biotechnol 98:4757–4770

    Article  PubMed  CAS  Google Scholar 

  • Wolfe AJ (2005) The acetate switch. Microbiol Mol Biol Rev 69:12–50

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xu YZ, Guo NN, Zheng ZM, Ou XJ, Liu HJ, Liu DH (2009) Metabolism in 1,3-propanediol fed-batch fermentation by a d-lactate deficient mutant of Klebsiella pneumoniae. Biotechnol Bioeng 104:965–972

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S, Izumiya H, Morita M, Arakawa E, Watanabe H (2009) Application of lambda Red recombination system to Vibrio cholerae genetics: simple methods for inactivation and modification of chromosomal genes. Gene 438:57–64

    Article  PubMed  CAS  Google Scholar 

  • Yen HW, Li FT, Chang JS (2014) The effects of dissolved oxygen level on the distribution of 1,3-propanediol and 2,3-butanediol produced from glycerol by an isolated indigenous Klebsiella sp. Ana-WS5. Bioresour Technol 153:374–378

    Article  PubMed  CAS  Google Scholar 

  • Zeng AP, Ross A, Biebl H, Tag C, Gunzel B, Deckwer WD (1994) Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in glycerol fermentation. Biotechnol Bioeng 44:902–911

    Article  PubMed  CAS  Google Scholar 

  • Zheng ZM, Xu YZ, Liu HJ, Guo NN, Cai ZZ, Liu DH (2008) Physiologic mechanisms of sequential products synthesis in 1,3-propanediol fed-batch fermentation by Klebsiella pneumoniae. Biotechnol Bioeng 100:923–932

    Article  PubMed  CAS  Google Scholar 

  • Zhu C, Jiang X, Zhang Y, Lin J, Fu S, Gong H (2015) Improvement of 1,3-propanediol production in Klebsiella pneumoniae by moderate expression of puuC (encoding an aldehyde dehydrogenase). Biotechnol Lett 37:1783–1790

    Article  PubMed  CAS  Google Scholar 

  • Zhuge B, Zhang C, Fang HY, Zhuge JA, Permaul K (2010) Expression of 1,3-propanediol oxidoreductase and its isoenzyme in Klebsiella pneumoniae for bioconversion of glycerol into 1,3-propanediol. Appl Microbiol Biotechnol 87:2177–2184

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No. 31271862.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Gong.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Human and animal studies

This article does not contain any studies with human participants or animals performed by any of the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Zhang, Y., Xu, D. et al. Deletion of poxB, pta, and ackA improves 1,3-propanediol production by Klebsiella pneumoniae . Appl Microbiol Biotechnol 100, 2775–2784 (2016). https://doi.org/10.1007/s00253-015-7237-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7237-2

Keywords

Navigation