Skip to main content

Advertisement

Log in

Display of phytase on the cell surface of Saccharomyces cerevisiae to degrade phytate phosphorus and improve bioethanol production

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Currently, development of biofuels as an alternative fuel has gained much attention due to resource and environmental challenges. Bioethanol is one of most important and dominant biofuels, and production using corn or cassava as raw materials has become a prominent technology. However, phytate contained in the raw material not only decreases the efficiency of ethanol production, but also leads to an increase in the discharge of phosphorus, thus impacting on the environment. In this study, to decrease phytate and its phosphorus content in an ethanol fermentation process, Saccharomyces cerevisiae was engineered through a surface-displaying system utilizing the C-terminal half of the yeast α-agglutinin protein. The recombinant yeast strain, PHY, was constructed by successfully displaying phytase on the surface of cells, and enzyme activity reached 6.4 U/g wet biomass weight. Ethanol productions using various strains were compared, and the results demonstrated that the specific growth rate and average fermentation rate of the PHY strain were higher 20 and 18 %, respectively, compared to the control strain S. cerevisiae CICIMY0086, in a 5-L bioreactor process by simultaneous saccharification and fermentation. More importantly, the phytate phosphorus concentration decreased by 89.8 % and free phosphorus concentration increased by 142.9 % in dry vinasse compared to the control in a 5-L bioreactor. In summary, we constructed a recombinant S. cerevisiae strain displaying phytase on the cell surface, which could improve ethanol production performance and effectively reduce the discharge of phosphorus. The strain reported here represents a useful novel engineering platform for developing an environment-friendly system for bioethanol production from a corn substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alfenore S, Molina-Jouve C, Guillouet SE, Uribelarrea JL, Goma G, Benbadis L (2002) Improving ethanol production and viability of Saccharomyces cerevisiae by a vitamin feeding strategy during fed-batch process. Appl Microbiol Biotechnol 60:67–72

    Article  CAS  PubMed  Google Scholar 

  • Alper H, Stephanopoulos G (2009) Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat Rev Microbiol 7:715–723. doi:10.1038/nrmicro2186

    Article  CAS  PubMed  Google Scholar 

  • Bennett P, Yang ST (2012) Beneficial effect of protracted sterilization of lentils on phytase production by Aspergillus ficuum in solid state fermentation. Biotechnol Prog 28:1263–1270. doi:10.1002/btpr.1603

    Article  CAS  PubMed  Google Scholar 

  • Bothast RJ, Schlicher MA (2005) Biotechnological processes for conversion of corn into ethanol. Appl Microbiol Biotechnol 67:19–25

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Zhou L, Tian K, Kumar A, Singh S, Prior BA, Wang Z (2013) Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production. Biotechnol Adv 31:1200–1223. doi:10.1016/j.biotechadv.2013.02.009

    Article  CAS  PubMed  Google Scholar 

  • Demoraes LMP, Astolfi S, Oliver SG (1995) Development of yeast strains for the efficient utilization of starch: evaluation of constructs that express α-amylase and glucoamylase separately or as bifunctional fusion proteins. Appl Microbiol Biotechnol 43:1067–1076

    Article  CAS  Google Scholar 

  • Fredlund K, Isaksson M, Rossander-Hulthen L, Almgren A, Sandberg AS (2006) Absorption of zinc and retention of calcium: dose-dependent inhibition by phytate. J Trace Elem Med Bio 20:49–57

    Article  CAS  Google Scholar 

  • Furukawa K, Kitano H, Mizoguchi H, Hara S (2004) Effect of cellular inositol content on ethanol tolerance of Saccharomyces cerevisiae in sake brewing. J Biosci Bioeng 98:107–113

    Article  CAS  PubMed  Google Scholar 

  • Gray KA, Zhao LS, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:141–146

    Article  CAS  PubMed  Google Scholar 

  • Guo ZP, Zhang L, Ding ZY, Wang ZX, Shi GY (2010) Improving the performance of industrial ethanol-producing yeast by expressing the aspartyl protease on the cell surface. Yeast 27:1017–1027. doi:10.1002/yea.1811

    Article  CAS  PubMed  Google Scholar 

  • Hahn-Hägerdahl B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556

    Article  Google Scholar 

  • He ZQ, Waldrip HW, Honeycutt CW, Erich MS, Senwo ZN (2009) Enzymatic quantification of phytate in animal manure. Commun Soil Sci Plan 40:566–575

    Article  CAS  Google Scholar 

  • Ismail KS, Sakamoto T, Hasunuma T, Zhao XQ, Kondo A (2014) Zinc, magnesium, and calcium ion supplementation confers tolerance to acetic acid stress in industrial Saccharomyces cerevisiae utilizing xylose. Biotechnol J 9:1519–1525. doi:10.1002/biot.201300553

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kebreab E, Hansen AV, Strathe AB (2012) Animal production for efficient phosphate utilization: from optimized feed to high efficiency livestock. Curr Opin Biotechnol 23:872–877. doi:10.1016/j.copbio.2012.06.001

    Article  CAS  PubMed  Google Scholar 

  • Khullar E, Shetty JK, Rausch KD, Tumbleson ME, Singh V (2011) Use of phytases in ethanol production from E-mill corn processing. Cereal Chem 88:223–227

    Article  CAS  Google Scholar 

  • Lee SY, Kim HM, Cheon S (2015) Metabolic engineering for the production of hydrocarbon fuels. Curr Opin Biotechnol 33:15–22. doi:10.1016/j.copbio.2014.09.008

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642. doi:10.1007/s00253-005-0229-x

    Article  CAS  PubMed  Google Scholar 

  • Liu KS (2011) Chemical composition of distillers grains, a review. J Agr Food Chem 59:1508–1526

    Article  CAS  Google Scholar 

  • Liu KS, Han JC (2011) Changes in mineral concentrations and phosphorus profile during dry-grind processing of corn into ethanol. Bioresource Technol 102:3110–3118

    Article  CAS  Google Scholar 

  • Lott JNA, Ockenden I, Raboy V, Batten GD (2000) Phytic acid and phosphorus in crop seeds and fruits: a global estimate. Seed Sci Res 10:11–33

    CAS  Google Scholar 

  • Mikulski D, Klosowski G, Rolbiecka A (2014) Effect of phytase application during high gravity (HG) maize mashes preparation on the availability of starch and yield of the ethanol fermentation process. Appl Biochem Biotechnol 174:1455–1470. doi:10.1007/s12010-014-1139-0

    Article  CAS  PubMed  Google Scholar 

  • Nielsen J, Larsson C, van Maris A, Pronk J (2013) Metabolic engineering of yeast for production of fuels and chemicals. Curr Opin Biotechnol 24:398–404

    Article  CAS  PubMed  Google Scholar 

  • Nissen TL, Schulze U, Nielsen J, Villadsen J (1997) Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiology 143(Pt 1):203–218

    Article  CAS  PubMed  Google Scholar 

  • Noureddini H, Dang J (2009) Degradation of phytates in distillers’ grains and corn gluten feed by Aspergillus niger phytase. Appl Biochem Biotechnol 159:11–23. doi:10.1007/s12010-008-8365-2

    Article  CAS  PubMed  Google Scholar 

  • Selle PH, Ravindran V, Caldwell RA, Bryden WL (2000) Phytate and phytase: consequences for protein utilisation. Nutr Res Rev 13:255–278

    Article  CAS  PubMed  Google Scholar 

  • Spiehs MJ, Varel VH (2009) Nutrient excretion and odorant production in manure from cattle fed corn wet distillers grains with solubles. J Anim Sci 87:2977–2984

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Yamada R, Ogino C, Kondo A (2012) Recent developments in yeast cell surface display toward extended applications in biotechnology. Appl Microbiol Biotechnol 95:577–591

    Article  CAS  PubMed  Google Scholar 

  • Thomas KC, Ingledew WM (1990) Fuel alcohol production: effects of free amino nitrogen on fermentation of very-high-gravity wheat mashes. Appl Environ Microbiol 56:2046–2050

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vallet C, Said R, Rabiller C, Martin ML (1996) Natural abundance isotopic fractionation in the fermentation reaction: influence of the nature of the yeast. Bioorg Chem 24:319–330

    Article  CAS  Google Scholar 

  • Van der Vaart JM, te Biesebeke R, Chapman JW, Toschka HY, Klis FM, Verrips CT (1997) Comparison of cell wall proteins of Saccharomyces cerevisiae as anchors for cell surface expression of heterologous proteins. Appl Environ Microbiol 63:615–620

    PubMed Central  PubMed  Google Scholar 

  • Wang Y, Shi WL, Liu XY, Shen Y, Bao XM, Bai FW, Qu YB (2004) Establishment of a xylose metabolic pathway in an industrial strain of Saccharomyces cerevisiae. Biotechnol Lett 26:885–890

    Article  CAS  PubMed  Google Scholar 

  • Wen F, Sun J, Zhao HM (2010) Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Environ Microbiol 76:1251–1260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang BL, Yunianta VC, Martin YL, Martin ML (1997) Natural abundance isotopic fractionation in the fermentation reaction: influence of the fermentation medium. Bioorg Chem 25:117–129

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the financial support from the Science and Technology Support Program of Jiangsu Province (BE2012618), the Priority Academic Program Development of Jiangsu Higher Education Institutions, Excellent Youth Foundation of Jiangsu Scientific Committee (BK20140002), the Fundamental Research Funds for the Central Universities (JUSRP51504), and the 111 Project (No. 111-2-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianzhong Chen.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Research involving human participants and/or animals

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Xiao, Y., Shen, W. et al. Display of phytase on the cell surface of Saccharomyces cerevisiae to degrade phytate phosphorus and improve bioethanol production. Appl Microbiol Biotechnol 100, 2449–2458 (2016). https://doi.org/10.1007/s00253-015-7170-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7170-4

Keywords

Navigation