Skip to main content

Advertisement

Log in

Different mechanisms of resistance modulate sulfite tolerance in wine yeasts

  • Genomics, transcriptomics, proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

From a technological point of view, yeast resistance to sulfite is of great interest and represents an important technological character for winemaking. Several mechanisms are involved, and strain-dependent strategies to obtain SO2 resistance can deeply influence wine quality, although this choice is less relevant in determining the technological performance of the strain during fermentation. In this study, to better understand the strain-specific mechanisms of resistance, 11 Saccharomyces cerevisiae strains, whose genomes have been previously sequenced, were selected. Their attitude towards sulfites, in terms of resistance and production, was evaluated, and RNA-sequencing of four selected strains was performed during fermentation process in synthetic grape must in the presence of SO2. Results demonstrated that at molecular level, the physical effect of SO2 triggered multiple stress responses in the cell and high tolerance to general enological stressing condition increased SO2 resistance. Adaptation mechanism due to high basal gene expression level rather than specific gene induction in the presence of sulfite seemed to be responsible in modulating strain resistance. This mechanism involved higher basal gene expression level of specific cell wall proteins, enzymes for lipid biosynthesis, and enzymes directly involved in SO2 assimilation pathway and efflux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aranda A, Jimenez-Marti E, Orozco H, Matallana E, Del Olmo M (2006) Sulfur and adenine metabolisms are linked, and both modulate sulfite resistance in wine yeast. J Agric Food Chem 54:5839–5846

    Article  PubMed  CAS  Google Scholar 

  • Avram D, Bakalinsky AT (1997) SSU1 encodes a plasma membrane protein with a central role in a network of proteins conferring sulfite tolerance in Saccharomyces cerevisiae. J Bacteriol 179:5971–5974

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bely L, Sablayrolles J, Barre P (1990) Description of alcoholic fermentation kinetics: its variability and significance. Am J Enol Viticult 40:319–324

    Google Scholar 

  • Borneman AR, Forgan AH, Pretorius IS, Chambers PJ (2008) Comparative genome analysis of a Saccharomyces cerevisiae wine strain. FEMS Yeast Res 8:1185–1195

    Article  PubMed  CAS  Google Scholar 

  • Borneman AR, Desany BA, Riches D, Affourtit JP, Forgan AH, Pretorius IS, Egholm M, Chambers PJ (2011) Whole-genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae. PLoS Genet 7(2):e1001287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Campagna D, Albiero A, Bilardi A, Caniato E, Forcato C, Manavski S, Vitulo N, Valle G (2009) PASS: a program to align short sequences. Bioinformatics 25(7):967–968

    Article  PubMed  CAS  Google Scholar 

  • Casalone E, Colella CM, Daly S, Gallori E, Moriani L, Polsinelli M (1992) Mechanism of resistance to sulfite in Saccharomyces cerevisiae. Curr Genet 22:435–440

    Article  PubMed  CAS  Google Scholar 

  • Cherest H, Davidian JC, Thomas D, Benes V, Ansorge W, Surdin-Kerjan Y (1997) Molecular characterization of two high affinity sulfate transporters in Saccharomyces cerevisiae. Genetics 145(3):627–635

    PubMed  PubMed Central  CAS  Google Scholar 

  • Delfini C, Formica JV (2001) Isolation selection and purification of wine yeasts. In: Wine microbiology: science and technology. Dekker, New York, US, pp. 193–218

    Google Scholar 

  • Divol B, Miot-Sertier C, Lonvaud-Funel A (2006) Genetic characterization of strains of Saccharomyces cerevisiae responsible for ‘refermentation’ in Botrytis-affected wines. J Appl Microbiol 100:516–526

    Article  PubMed  CAS  Google Scholar 

  • Divol B, du Toit M, Duckitt E (2012) Surviving in the presence of sulphur dioxide: strategies developed by wine yeasts. Appl Microbiol Biotechnol 95:601–613

    Article  PubMed  CAS  Google Scholar 

  • Fugelsang KC, Edwards CG (2007) Wine microbiology. Practical applications and procedures. Springer, New York, USA

    Book  Google Scholar 

  • Galeote V, Novo M, Salema-Oom M, Brion C, Valério E, Gonçalves P, Dequin S (2010) FSY1, a horizontally transferred gene in the Saccharomyces cerevisiae EC1118 wine yeast strain, encodes a high-affinity fructose/H+ symporter. Microbiology 156(Pt12):3754–3761. doi:10.1099/mic.0.041673-0

    Article  PubMed  CAS  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274(5287):546–567

    Article  PubMed  CAS  Google Scholar 

  • Goto-Yamamoto N, Kitano K, Shiki K, Yoshida Y, Suzuki T, Iwata T, Yamane Y, Hara S (1998) SSU1-R, a sulfite resistance gene of wine yeast, is an allele of SSU1 with a different upstream sequence. J Ferment Bioeng 86:427–433

    Article  CAS  Google Scholar 

  • Herrero M, Garcia LA, Diaz M (2003) The effect of SO2 on the production of ethanol, acetaldehyde, organic acids and flavor volatiles during industrial cider fermentation. J Agric Food Chem 51:3455–3459

    Article  PubMed  CAS  Google Scholar 

  • Hinze H, Holzer H (1986) Analysis of the energy metabolism after incubation of Saccharomyces cerevisiae with sulfite or nitrite. Arch Microbiol 145:27–31

    Article  PubMed  CAS  Google Scholar 

  • Jazwinski SM (1999) Molecular mechanisms of yeast longevity. Trends Microbiol 7:247–252

    Article  PubMed  CAS  Google Scholar 

  • Liu S-Q, Pilone GJ (2000) An overview of formation and roles of acetaldehyde in winemaking with emphasis on microbiological implications. Int J Food Sci Technol 35:49–61

    Article  CAS  Google Scholar 

  • Lopes CA, Rodriguez ME, Querol A, Bramardi S, Caballero AC (2006) Relationship between molecular and enological features of Patagonian wine yeasts: relevance in selection protocols. World J Microbiol Biotechnol 22:827–833

    Article  CAS  Google Scholar 

  • Marks VD, Ho Sui SJ, Erasmus D, van der Merwe GK, Brumm J, Wasserman WW, Bryan J, van Vuuren HJ (2008) Dynamics of the yeast transcriptome during wine fermentation reveals a novel fermentation stress response. FEMS Yeast Res 8:35–52

  • Meng ZQ, Qin GH, Zhang B, Bai JL (2004) DNA damaging effects of sulfur dioxide derivatives in cells from various organs of mice. Mutagenesis 19:465–468

    Article  PubMed  CAS  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628

    Article  PubMed  CAS  Google Scholar 

  • Nardi T, Corich V, Giacomini A, Blondin B (2010) A sulphite inducible form of the sulphite efflux gene SSU1 in a Saccharomyces cerevisiae wine yeast. Microbiology 156:1686–1696

    Article  PubMed  CAS  Google Scholar 

  • Neta P, Huie RE (1985) Free-radical chemistry of sulfite. Environ Health Perspect 64:209–217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Novo M, Bigey F, Beyne E, Galeote V, Gavory F, Mallet S, Cambon B, Legras J, Wincker P, Casaregola S, Dequin S (2009) Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proc Natl Acad Sci U S A 106(38):16333–16338

    Article  PubMed  PubMed Central  Google Scholar 

  • Park H, Bakalinsky AT (2000) SSU1 mediates sulphite efflux in Saccharomyces cerevisiae. Yeast 16:881–888

    Article  PubMed  CAS  Google Scholar 

  • Park H, Hwang YS (2008) Genome-wide transcriptional responses to sulfite in Saccharomyces cerevisiae. J Microbiol 46:542–548

    Article  PubMed  CAS  Google Scholar 

  • Perez-Ortin JE, Querol A, Puig S, Barrio E (2002) Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains. Genome Res 12:1533–1539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pilkington BJ, Rose AH (1988) Reaction of Saccharomyces cerevisiae and Zygosaccharomyces bailii to sulfite. J Gen Microbiol 134:2823–2830

    PubMed  CAS  Google Scholar 

  • Ribereau-Gayon P, Dubourdieu D, Doneche B, Lonvaud A (2006) Handbook of enology. Vol. 1. The microbiology of wine and vinifications, 2nd edn. John Wiley and Sons, New York, NY

    Google Scholar 

  • Romano P, Suzzi G (1993) Sulphur dioxide and wine microorganisms. In: Fleet GH (ed) Wine microbiology and biotechnology. Harwood Academic Publishers, Chur, pp. 373–393

    Google Scholar 

  • Rossignol T, Dulau L, Julien A, Blondin B (2003) Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation. Yeast 20:1369–1385

    Article  PubMed  CAS  Google Scholar 

  • Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, Li J, Thiagarajan M, White JA, Quackenbush J (2006) TM4 microarray software suite. Methods Enzymol 411:134–193

    Article  PubMed  CAS  Google Scholar 

  • Salma M, Rousseaux S, Sequeira-Le Grand A, Divol B, Alexandre H (2013) Characterization of the viable but nonculturable (VBNC) state in Saccharomyces cerevisiae. PLoS One 8(10):e77600. doi:10.1371/journal.pone.0077600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sardu A, Treu L, Campanaro S (2014) Transcriptome structure variability in Saccharomyces cerevisiae strains determined with a newly developed assembly software. BMC Genomics 15:1045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schimz K-L (1980) The effect of sulfite on the yeast Saccharomyces cerevisiae. Arch Microbiol 125:89–95

    Article  PubMed  CAS  Google Scholar 

  • Schimz K-L, Holzer H (1979) Rapid decrease of ATP content in intact cells of Saccharomyces cerevisiae after incubation with low concentrations of sulfite. Arch Microbiol 121:225–229

    Article  PubMed  CAS  Google Scholar 

  • Swiegers JH, Bartowsky EJ, Henschke PA, Pretorius IS (2005) Yeast and bacterial modulation of wine aroma and flavour. Australian J Grape Wine Res 11:139–173

    Article  CAS  Google Scholar 

  • Thomas D, Surdin-Kerjan Y (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61:503–532

    PubMed  PubMed Central  CAS  Google Scholar 

  • Treu L, Toniolo C, Nadai C, Sardu A, Giacomini A, Corich V, Campanaro S (2014a) A) the impact of genomic variability on gene expression in environmental Saccharomyces cerevisiae strains. Env Microbiol 16:1378–1397. doi:10.1111/1462-2920.12327

    Article  CAS  Google Scholar 

  • Treu L, Campanaro S, Nadai C, Toniolo C, Nardi T, Giacomini A, Valle G, Blondin B, Corich V (2014b) b) oxidative stress response and nitrogen utilization are strongly variable in Saccharomyces cerevisiae wine strains with different fermentation performances. Appl Microbiol Biotechnol 98(9):4119–4135. doi:10.1007/s00253-014-5679-6

    Article  PubMed  CAS  Google Scholar 

  • van der Vaart JM, Caro LH, Chapman JW, Klis FM, Verrips CT (1995) Identification of three mannoproteins in the cell wall of Saccharomyces cerevisiae. J Bacteriol 177(11):3104–3110

    PubMed  PubMed Central  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu X, Wightman JD, Geller BL, Avram D, Bakalinsky AT (1994) Isolation and characterization of sulfite mutants of Saccharomyces cerevisiae. Curr Genet 25:488–496

    Article  PubMed  CAS  Google Scholar 

  • Zeeberg BR, Feng W, Wang G, Wang MD, Fojo AT, Sunshine M, Narasimhan S, Kane DW, Reinhold WC, Lababidi S, Bussey KJ, Riss J, Barrett JC, Weinstein JN (2003) GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol 4(4):R28

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao S, Fung-Leung WP, Bittner A, Ngo K, Liu X (2014) Comparison of RNA-seq and microarray in transcriptome profiling of activated T cells. PLoS ONE 9(1):e78644. doi:10.1371/journal.pone.0078644 eCollection 2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zimmer A, Durand C, Loira N, Durrens P, Sherman DJ, Marullo P (2014) QTL dissection of lag phase in wine fermentation reveals a new translocation responsible for Saccharomyces cerevisiae adaptation to sulfite. PLoS ONE 9(1):e86298. doi:10.1371/journal.pone.0086298 eCollection 2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This study has been funded in part by POR “Competitività regionale e occupazione” - parte FESR 2007/2013 Azione 1.1.1. Progetto “RISIB” SMUPR n. 4145 “Potenziamento della rete di infrastrutture a supporto dell’innovazione biotecnologica” and by MIUR (ex-60 % Grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Giacomini.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Human and animal studies

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 266 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadai, C., Treu, L., Campanaro, S. et al. Different mechanisms of resistance modulate sulfite tolerance in wine yeasts. Appl Microbiol Biotechnol 100, 797–813 (2016). https://doi.org/10.1007/s00253-015-7169-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7169-x

Keywords

Navigation