Skip to main content
Log in

Engineering resistance to phage GVE3 in Geobacillus thermoglucosidasius

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Geobacillus thermoglucosidasius is a promising platform organism for the production of biofuels and other metabolites of interest. G. thermoglucosidasius fermentations could be subject to bacteriophage-related failure and financial loss. We develop two strains resistant to a recently described G. thermoglucosidasius-infecting phage GVE3. The phage-encoded immunity gene, imm, was overexpressed in the host leading to phage resistance. A phage-resistant mutant was isolated following expression of a putative anti-repressor-like protein and phage challenge. A point mutation was identified in the polysaccharide pyruvyl transferase, csaB. A double crossover knockout mutation of csaB confirmed its role in the phage resistance phenotype. These resistance mechanisms appear to prevent phage DNA injection and/or lysogenic conversion rather than just reducing efficiency of plating, as no phage DNA could be detected in resistant bacteria challenged with GVE3 and no plaques observed even at high phage titers. Not only do the strains developed here shed light on the biological relationship between the GVE3 phage and its host, they could be employed by those looking to make use of this organism for metabolite production, with reduced occurrence of GVE3-related failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baptista C, Barreto HC, São-José C (2013) High levels of Deg U-P activate an Esat-6-like secretion system in Bacillus subtilis. PLOS One. doi:10.1371/journal.pone.0067840

    Google Scholar 

  • Bartosiak-Jentys J, Eley K, Leak DJ (2012) Application of pheB as a reporter gene for Geobacillus spp., enabling qualitative colony screening and quantitative analysis of promoter strength. Appl Environ Microbiol 78:5945–5947

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bhaya D, Davison M, Barrangou R (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45:273–297

    Article  CAS  PubMed  Google Scholar 

  • Bishop-Lilly KA, Plaut RD, Chen PE, Akmal A, Willner KM, Butani A, Dorsey S, Mokashi V, Mateczun AJ, Chapman C, George M, Luu T, Read TD, Calendar R, Stibitz S, Sozhamannan S (2012) Whole genome sequencing of phage-resistant Bacillus anthracis mutants reveals an essential role for cell surface anchoring protein CsaB in phage AP50c adsorption. Virol J 9:246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Breitbart M, Rohwer F (2005) Here a virus, there a virus, everywhere the same virus? Trends Microbiol 13:278–284

    Article  CAS  PubMed  Google Scholar 

  • Brűssow H (2001) Phages of dairy bacteria. Annu Rev Microbiol 55:283–303

    Article  PubMed  Google Scholar 

  • Chang C, Nam K, Young R (1995) S gene expression and the timing of lysis by bacteriophage λ. J Bacteriol 177:3283–3294

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chaturongakul S, Ounjai P (2014) Phage–host interplay: examples from tailed phages and Gram-negative bacterial pathogens. Front Microbiol 5:442

    Article  PubMed Central  PubMed  Google Scholar 

  • Clément JM, Lepouce E, Marchal C, Hofnung M (1983) Genetic study of a membrane protein: DNA sequence alterations due to 17 lamB point mutations affecting adsorption of phage lambda. EMBO J 2:77–80

    PubMed Central  PubMed  Google Scholar 

  • Coffey A, Ross RP (2002) Bacteriophage-resistance systems in dairy starter strains: molecular analysis to application. Antonie Van Leeuwenhoek 82:303–321

    Article  CAS  PubMed  Google Scholar 

  • Cripps RE, Eley K, Leak DJ, Rudd B, Taylor M, Todd M, Boakes S, Martin S, Atkinson T (2009) Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab Eng 11:398–408

    Article  CAS  PubMed  Google Scholar 

  • Davison S, Couture-Tosi E, Candela T, Mock M, Fouet A (2005) Identification of the Bacillus anthracis ϒ phage receptor. J Bacteriol 187:6742–6749

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dupont K, Janzen T, Vogensen FK, Josephsen J, Stuer-Lauridsen B (2004) Identification of Lactococcus lactis genes required for bacteriophage adsorption. Appl Environ Microbiol 70:5825–5832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Durmaz E, Klaenhammer TR (2007) Abortive phage resistance mechanism AbiZ speeds the lysis clock to cause premature lysis of phage-infected Lactococcus lactis. J Bacteriol 189:1417–1425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fogg PCM, Rigden DJ, Saunders JR, McCarthy AJ, Allison HE (2010) Characterization of the relationship between integrase, excisionase and antirepressor activities associated with a super infecting Shiga toxin encoding bacteriophage. Nuc Acids Res 39:2116–2129

    Article  Google Scholar 

  • Iyer LM, Koonin EV, Aravind L (2002) Extensive domain shuffling in transcription regulators of DNA viruses and implications for the origin of fungal APSES transcription factors. Gen Biol 3:research0012.1–0012.11

  • Jakutytė L, Baptista B, São-José C, Daugelavičius R, Carballido-López R, Tavares P (2011) Bacteriophage infection in rod-shaped Gram-positive bacteria: evidence for a preferential polar route for phage SPP1 entry in Bacillus subtilis. J Bacteriol 193:4893–4903

    Article  PubMed Central  PubMed  Google Scholar 

  • Jones DT, Shirley M, Wu X, Keis S (2000) Bacteriophage infections in the industrial acetone butanol (AB) fermentation process. J Mol Microbiol Biotechnol 2:21–26

    CAS  PubMed  Google Scholar 

  • Kotze AA, Tuffin IM, Deane SM, Rawlings DE (2006) Cloning and characterization of the chromosomal arsenic resistance genes from Acidithiobacillus caldus and enhanced arsenic resistance on conjugal transfer of ars genes located on transposon TnAtcArs. Microbiology 152:3551–3560

    Article  CAS  PubMed  Google Scholar 

  • Lin PP, Rabe KS, Takasumi JL, Kadisch M, Arnold FH, Liao JC (2014) Isobutanol production at elevated temperatures in thermophilic Geobacillus thermoglucosidasius. Metab Eng 24:1–8

    Article  CAS  PubMed  Google Scholar 

  • Mahony J, Murphy J, van Sinderen D (2012) Lactococcal 936-type phages and dairy fermentation problems: from detection to evolution and prevention. Front Microbiol 3:335

    Article  PubMed Central  PubMed  Google Scholar 

  • Marco MB, Moineau S, Quiberoni A (2012) Bacteriophages and dairy fermentations. Bacteriophage 2:149–158

    Article  PubMed Central  PubMed  Google Scholar 

  • Mardanov AV, Ravin NV (2007) The antirepressor needed for induction of linear plasmid-prophage N15 belongs to the SOS regulon. J Bacteriol 189:6333–6338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McGrath S, Fitzgerald GF, van Sinderen D (2002) Identification and characterization of phage-resistance genes in temperate lactococcal bacteriophages. Mol Microbiol 43:509–520

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin JR, Wong HC, Ting YE, Van Arsdell JN, Chang S (1986) Control of lysogeny and immunity of Bacillus subtilis temperate bacteriophage SPβ by its d gene. J Bacteriol 167:952–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mesnage S, Fontaine T, Mignot T, Delepierre M, Mock M, Fouet A (2000) Bacterial SLH domain proteins are non-covalently anchored to the cell surface via a conserved mechanism involving wall polysaccharide pyruvylation. EMBO J 19:4473–4484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moineau S (1999) Applications of phage resistance in lactic acid bacteria. Antonie Van Leeuwenhoek 76:377–382

    Article  CAS  PubMed  Google Scholar 

  • Nijkamp HJJ, Szybalski W, Calef E (1971) Antirepressor controls the transcription of the repressor operon of lambda prophage (L. G. H. Ledoux, Ed.), Informative molecules in biological systems, p. 241–248. Amsterdam: North-Holland Publishing Co

  • Örmälä A-M, Jalasvuori M (2013) Phage therapy: should bacterial resistance to phages be a concern, even in the long run? Bacteriophage 3(1):e24219

    Article  PubMed Central  PubMed  Google Scholar 

  • Raab R, Neal G, Sohaskey C, Smith J, Young R (1988) Dominance in lambda S mutations and evidence for translational control. J Mol Biol 199:95–105

    Article  CAS  PubMed  Google Scholar 

  • Reichardt LF (1975) Control of bacteriophage lambda repressor synthesis: regulation of the maintenance pathway by the cro and cl products. J Molec Biol 93:289–305

    Article  CAS  PubMed  Google Scholar 

  • Samson JE, Magadán AH, Sabri M, Moineau S (2013) Revenge of the phages: defeating bacterial defences. Nat Rev Microbiol 11:675–687

    Article  CAS  PubMed  Google Scholar 

  • São-José C, Baptista C, Santos MA (2004) Bacillus subtilis operon encoding a membrane receptor for bacteriophage SPP1. J Bacteriol 186:8337–8346

    Article  PubMed Central  PubMed  Google Scholar 

  • Shearwin KE, Brumby AM, Egan JB (1998) The Tum protein of coliphage 186 is an antirepressor. J Bacteriol 273:5708–5717

    CAS  Google Scholar 

  • Su F, Xua P (2014) Genomic analysis of thermophilic Bacillus coagulans strains: efficient producers for platform bio-chemicals. Sci Rep 4:3926

    PubMed Central  PubMed  Google Scholar 

  • Taylor MP, Esteban CD, Leak DJ (2008) Development of a versatile shuttle vector for gene expression in Geobacillus spp. Plasmid 60:45–52

    Article  CAS  PubMed  Google Scholar 

  • Taylor MP, Eley KL, Martin S, Tuffin MI, Burton SG, Cowan DA (2009) Thermophilic ethanologenesis: future prospects for second-generation bioethanol production. Trends Biotechnol 27:398–405

    Article  CAS  PubMed  Google Scholar 

  • Van Zyl LJ, Taylor MP, Eley K, Tuffin M, Cowan DA (2014) Engineering pyruvate decarboxylase-mediated ethanol production in the thermophilic host Geobacillus thermoglucosidasius. Appl Microbiol Biotechnol 98:1247–1259

    Article  PubMed  Google Scholar 

  • Van Zyl LJ, Sunda F, Taylor MP, Cowan DA, Trindade MI (2015) Identification and characterization of a novel Geobacillus thermoglucosidasius bacteriophage, GVE3. Arch. Virol: 2269-2282

Download references

Acknowledgments

The authors wish to thank TMO Renewables for the gift of the GVE3 phage. This work was funded by the National Research Foundation (NRF) of South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Joaquim van Zyl.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Zyl, L.J., Taylor, M.P. & Trindade, M. Engineering resistance to phage GVE3 in Geobacillus thermoglucosidasius . Appl Microbiol Biotechnol 100, 1833–1841 (2016). https://doi.org/10.1007/s00253-015-7109-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7109-9

Keywords

Navigation