Skip to main content
Log in

Monomeric Corynebacterium glutamicum N-acetyl glutamate kinase maintains sensitivity to L-arginine but has a lower intrinsic catalytic activity

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

N-acetyl glutamate kinase (NAGK) is a key enzyme in the synthesis of L-arginine, and L-arginine-sensitive NAGK typically has hexameric architecture. Defining the relationship between this architecture and L-arginine inhibition can provide a foundation to identify the key amino acids involved in the allosteric regulation network of L-arginine. In the present study, the key amino acids in the N-terminal helix (N-helix) of Corynebacterium glutamicum (Cg) NAGK required for hexamer formation were determined using structural homology modeling and site-directed mutagenesis. It was also verified that hexameric architecture is required for the positive cooperativity of inhibition by L-arginine and for efficient catalysis, but that it is not the determinant of inhibition by L-arginine. Monomeric mutants retained a similar sensitivity to L-arginine as the hexameric form, indicating that monomers contain an independent, sensitive signal transduction network of L-arginine to mediate allosteric regulation. Mutation studies of CgNAGKs also revealed that amino acid residues 18–23 of the N-helix are required for inhibition by L-arginine, and that E19 may be an essential amino acid influencing the apparent affinity of L-arginine. Collectively, these studies may illuminate the basic mechanism of metabolic homeostasis of C. glutamicum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Cunin R, Glansdorff N, Pierard A, Stalon V (1986) Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev 50(3):314

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fernández-Murga ML, Rubio V (2008) Basis of arginine sensitivity of microbial N-acetyl-L-glutamate kinases: mutagenesis and protein engineering study with the Pseudomonas aeruginosa and Escherichia coli enzymes. J Bacteriol 190(8):3018–3025. doi:10.1128/JB.01831-07

    Article  PubMed Central  PubMed  Google Scholar 

  • Fernández-Murga ML, Gil-Ortiz F, Llácer JL, Rubio V (2004) Arginine biosynthesis in Thermotoga maritima: characterization of the arginine-sensitive N-acetyl-L-glutamate kinase. J Bacteriol 186(18):6142–6149. doi:10.1128/JB.186.18.6142-6149.2004

    Article  PubMed Central  PubMed  Google Scholar 

  • Gil-Ortiz F, Ramón-Maiques S, Fernández-Murga ML, Fita I, Rubio V (2010) Two crystal structures of Escherichia coli N-acetyl-L-glutamate kinase demonstrate the cycling between open and closed conformations. J Mol Biol 399(3):476–490. doi:10.1016/j.jmb.2010.04.025

    Article  CAS  PubMed  Google Scholar 

  • Haas D, Leisinger T (1975) N-acetylglutamate 5-phosphotransferase of Pseudomonas aeruginosa. Catalytic and regulatory properties. Eur J Biochem/FEBS 52(2):377–393. doi:10.1111/j.1432-1033.1975.tb04005.x

    Article  CAS  Google Scholar 

  • Huang Y, Zhang H, Tian H, Li C, Han S, Lin Y, Zheng S (2015) Mutational analysis to identify the residues essential for the inhibition of N-acetyl glutamate kinase of Corynebacterium glutamicum. Appl Microbiol Biotechnol. 1–11 doi:10.1007/s00253-015-6469-5

  • Larkin MA, Blackshields G, Brown N, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948. doi:10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283–291. doi:10.1107/S0021889892009944

    Article  CAS  Google Scholar 

  • Liithy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356(6364):83–85. doi:10.1038/356083a0

    Article  Google Scholar 

  • Marco-Marín C, Ramón-Maiques S, Tavárez S, Rubio V (2003) Site-directed mutagenesis of Escherichia coli acetylglutamate kinase and aspartokinase III probes the catalytic and substrate-binding mechanisms of these amino acid kinase family enzymes and allows three-dimensional modelling of aspartokinase. J Mol Biol 334(3):459–476. doi:10.1016/j.jmb.2003.09.038

    Article  PubMed  Google Scholar 

  • Marvin J, Corcoran E, Hattangadi N, Zhang J, Gere S, Hellinga H (1997) The rational design of allosteric interactions in a monomeric protein and its applications to the construction of biosensors. Proc Natl Acad Sci U S A 94(9):4366–4371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mizuno Y, Moorhead GB, Ng KK-S (2007) Structural basis for the regulation of N-acetylglutamate kinase by PII in Arabidopsis thaliana. J Biol Chem 282(49):35733–35740. doi:10.1074/jbc.M707127200

    Article  CAS  PubMed  Google Scholar 

  • Ramón-Maiques S, Marina A, Gil-Ortiz F, Fita I, Rubio V (2002) Structure of acetylglutamate kinase, a key enzyme for arginine biosynthesis and a prototype for the amino acid kinase enzyme family, during catalysis. Structure 10(3):329–342. doi:10.1016/S0969-2126(02)00721-9

    Article  PubMed  Google Scholar 

  • Ramón-Maiques S, Fernández-Murga ML, Gil-Ortiz F, Vagin A, Fita I, Rubio V (2006) Structural Bases of Feed-back Control of Arginine Biosynthesis, Revealed by the Structures of Two Hexameric N-Acetylglutamate Kinases, from Thermotoga maritima and Pseudomonas aeruginosa. J Mol Biol 356(3):695–713. doi:10.1016/j.jmb.2005.11.079

    Article  PubMed  Google Scholar 

  • Sakanyan V, Petrosyan P, Lecocq M, Boyen A, Legrain C, Demarez M, Hallet J-N, Glansdorff N (1996) Genes and enzymes of the acetyl cycle of arginine biosynthesis in Corynebacterium glutamicum: enzyme evolution in the early steps of the arginine pathway. Microbiology 142(1):99–108. doi:10.1099/13500872-142-1-99

    Article  CAS  PubMed  Google Scholar 

  • Sundaresan R, Ragunathan P, Kuramitsu S, Yokoyama S, Kumarevel T, Ponnuraj K (2012) The structure of putative N-acetyl glutamate kinase from Thermus thermophilus reveals an intermediate active site conformation of the enzyme. Biochem Biophys Res Commun 420(3):692–697. doi:10.1016/j.bbrc.2012.03.072

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Rao Z, Dou W, Jin J, Xu Z (2012) Site-directed mutagenesis studies on the L-arginine-binding sites of feedback inhibition in N-acetyl-L-glutamate kinase (NAGK) from Corynebacterium glutamicum. Curr Microbiol 64(2):164–172. doi:10.1007/s00284-011-0042-y

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of the National Natural Science Foundation of China (No. 31171633) to S Zheng and the National Key Technology Support Program to Y Lin (No. 2013BAD10B01) and the Fundamental Research Funds for the Central Universities to Y Lin. This work was also partially supported by startup funds from the School of Bioscience and Biotechnology, South China University of Technology and the Key Laboratory of Renewable Energy, Chinese Academy of Sciences (No. y507k81001) to X Yang.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaorong Yang or Suiping Zheng.

Ethics declarations

This article does not contain any studies with human participants or animals by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 245 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Li, C., Zhang, H. et al. Monomeric Corynebacterium glutamicum N-acetyl glutamate kinase maintains sensitivity to L-arginine but has a lower intrinsic catalytic activity. Appl Microbiol Biotechnol 100, 1789–1798 (2016). https://doi.org/10.1007/s00253-015-7065-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7065-4

Keywords

Navigation