Skip to main content

Advertisement

Log in

Improving alkane synthesis in Escherichia coli via metabolic engineering

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Concerns about energy security and global petroleum supply have made the production of renewable biofuels an industrial imperative. The ideal biofuels are n-alkanes in that they are chemically and structurally identical to the fossil fuels and can “drop in” to the transportation infrastructure. In this work, an Escherichia coli strain that produces n-alkanes was constructed by heterologous expression of acyl-acyl carrier protein (ACP) reductase (AAR) and aldehyde deformylating oxygenase (ADO) from Synechococcus elongatus PCC7942. The accumulation of alkanes ranged from 3.1 to 24.0 mg/L using different expressing strategies. Deletion of yqhD, an inherent aldehyde reductase in E. coli, or overexpression of fadR, an activator for fatty acid biosynthesis, exhibited a nearly twofold increase in alkane titers, respectively. Combining yqhD deletion and fadR overexpression resulted in a production titer of 255.6 mg/L in E. coli, and heptadecene was the most abundant product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akhtar MK, Turner NJ, Jones PR (2013) Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities. Proc Natl Acad Sci U S A 110(1):87–92

    Article  PubMed  PubMed Central  Google Scholar 

  • Andre C, Kim SW, Yu XH, Shanklin J (2013) Fusing catalase to an alkane-producing enzyme maintains enzymatic activity by converting the inhibitory byproduct H2O2 to the cosubstrate O2. Proc Natl Acad Sci U S A 110(8):3191–3196

    Article  PubMed  PubMed Central  Google Scholar 

  • Atsumi S, Wu TY, Eckl EM, Hawkins SD, Buelter T, Liao JC (2010) Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 85(3):651–657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.0008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beller HR, Goh EB, Keasling JD (2010) Genes involved in long-chain alkene biosynthesis in Micrococcus luteus. Appl Environ Microbiol 76(4):1212–1223

  • Bernard A, Domergue F, Pascal S, Jetter R, Renne C, Faure J-D, Haslam RP, Napier JA, Lessire R, Joubès J (2012) Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. Plant Cell 24(7):3106–3118

  • Cherepanov PP, Wackernagel W (1995) Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158(1):9–14

    Article  PubMed  CAS  Google Scholar 

  • Choi YJ, Lee SY (2013) Microbial production of short-chain alkanes. Nature 502(7472):571–574

    Article  PubMed  CAS  Google Scholar 

  • Cronan JE (1997) In vivo evidence that acyl coenzyme A regulates DNA binding by the Escherichia coli FadR global transcription factor. J Bacteriol 179(5):1819–1823

    PubMed  PubMed Central  CAS  Google Scholar 

  • Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R (2011) Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 476(7360):355–359

    Article  PubMed  CAS  Google Scholar 

  • Fujita Y, Matsuoka H, Hirooka K (2007) Regulation of fatty acid metabolism in bacteria. Mol Microbiol 66(4):829–839

    Article  PubMed  CAS  Google Scholar 

  • Harger M, Zheng L, Moon A, Ager C, An JH, Choe C, Lai YL, Mo B, Zong D, Smith MD, Egbert RG, Mills JH, Baker D, Pultz IS, Siegel JB (2013) Expanding the product profile of a microbial alkane biosynthetic pathway. ACS Synth Biol 2(1):59–62

    Article  PubMed  CAS  Google Scholar 

  • Howard TP, Middelhaufe S, Moore K, Edner C, Kolak DM, Taylor GN, Parker DA, Lee R, Smirnoff N, Aves SJ, Love J (2013) Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli. Proc Natl Acad Sci U S A 110(19):7636–7641

    Article  PubMed  PubMed Central  Google Scholar 

  • Janßen HJ, Steinbüchel A (2014) Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. Biotechnol Biofuels 7:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kass LR, Bloch K (1967) On the enzymatic synthesis of unsaturated fatty acids in Escherichia coli. Proc Natl Acad Sci U S A 58(3):1168–1173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knothe G (2009) Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ Sci 2(7):759–766

    Article  CAS  Google Scholar 

  • Lennen RM, Braden DJ, West RA, Dumesic JA, Pfleger BF (2010) A process for microbial hydrocarbon synthesis: overproduction of fatty acids in Escherichia coli and catalytic conversion to alkanes. Biotechnol Bioeng 106(2):193–202

    Article  PubMed  CAS  Google Scholar 

  • Liu A, Zhu T, Lu X, Song L (2013) Hydrocarbon profiles and phylogenetic analyses of diversified cyanobacterial species. Appl Energy 111:383–393

    Article  CAS  Google Scholar 

  • Liu X, Yu H, Jiang X, Ai G, Yu B, Zhu K (2015) Biosynthesis of butenoic acid through fatty acid biosynthesis pathway in Escherichia coli. Appl Microbiol Biotechnol 99(4):1795–1804

    Article  PubMed  CAS  Google Scholar 

  • Marrakchi H, Choi K-H, Rock CO (2002) A new mechanism for anaerobic unsaturated fatty acid formation in Streptococcus pneumoniae. J Biol Chem 277(47):44809–44816

    Article  PubMed  CAS  Google Scholar 

  • Mendez-Perez D, Begemann MB, Pfleger BF (2011) Modular synthase-encoding gene involved in alpha-olefin biosynthesis in Synechococcus sp. strain PCC 7002. Appl Environ Microbiol 77(12):4264–4267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nunn WD, Giffin K, Clark D, Cronan JE (1983) Role for fadR in unsaturated fatty acid biosynthesis in Escherichia coli. J Bacteriol 154(2):554–560

    PubMed  PubMed Central  CAS  Google Scholar 

  • Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488(7411):320–328

    Article  PubMed  CAS  Google Scholar 

  • Perez JM, Arenas FA, Pradenas GA, Sandoval JM, Vasquez CC (2008) Escherichia coli YqhD exhibits aldehyde reductase activity and protects from the harmful effect of lipid peroxidation-derived aldehydes. J Biol Chem 283(12):7346–7353

    Article  PubMed  CAS  Google Scholar 

  • Rahman Z, Sung BH, Yi J-Y, Bui LM, Lee JH, Kim SC (2014) Enhanced production of n-alkanes in Escherichia coli by spatial organization of biosynthetic pathway enzymes. J Biotechnol 192:187–191

    Article  CAS  Google Scholar 

  • Reiser S, Somerville C (1997) Isolation of mutants of Acinetobacter calcoaceticus deficient in wax ester synthesis and complementation of one mutation with a gene encoding a fatty acyl coenzyme A reductase. J Bacteriol 179(9):2969–2975

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rodriguez GM, Atsumi S (2012) Isobutyraldehyde production from Escherichia coli by removing aldehyde reductase activity. Microb Cell Factories 11:90

    Article  CAS  Google Scholar 

  • Rodriguez GM, Atsumi S (2014) Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli. Metab Eng 25:227–237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rude MA, Baron TS, Brubaker S, Alibhai M, Del Cardayre SB, Schirmer A (2011) Terminal olefin (1-alkene) biosynthesis by a novel p450 fatty acid decarboxylase from Jeotgalicoccus species. Appl Environ Microbiol 77(5):1718–1727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329(5991):559–562

    Article  PubMed  CAS  Google Scholar 

  • Sukovich DJ, Seffernick JL, Richman JE, Gralnick JA, Wackett LP (2010) Widespread head-to-head hydrocarbon biosynthesis in bacteria and role of OleA. Appl Environ Microbiol 76(12):3850–3862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sulzenbacher G, Alvarez K, van den Heuvel RHH, Versluis C, Spinelli S, Campanacci V, Valencia C, Cambillau C, Eklund H, Tegoni M (2004) Crystal structure of Escherichia coli alcohol dehydrogenase YqhD: evidence of a covalently modified NADP coenzyme. J Mol Biol 342(2):489–502

    Article  PubMed  CAS  Google Scholar 

  • Thomason LC, Costantino N, Court DL (2007) E. coli genome manipulation by P1 transduction. Curr Protoc Mol Biol 79:1.17.11–11.17.18

    Google Scholar 

  • Tsay JT, Oh W, Larson TJ, Jackowski S, Rock CO (1992) Isolation and characterization of the beta-ketoacyl-acyl carrier protein synthase III gene (fabH) from Escherichia coli K-12. J Biol Chem 267(10):6807–6814

    PubMed  CAS  Google Scholar 

  • Xu P, Vansiri A, Bhan N, Koffas MAG (2012) ePathBrick: a synthetic biology platform for engineering metabolic pathways in E. coli. ACS Synth Biol 1(7):256–266

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Ouellet M, Batth TS, Adams PD, Petzold CJ, Mukhopadhyay A, Keasling JD (2012) Enhancing fatty acid production by the expression of the regulatory transcription factor FadR. Metab Eng 14(6):653–660

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Lu X, Li J-J (2013) Conversion of fatty aldehydes into alk (a/e)nes by in vitro reconstituted cyanobacterial aldehyde-deformylating oxygenase with the cognate electron transfer system. Biotechnol Biofuels 6(1):1–10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng YN, Li LL, Liu Q, Yang JM, Wang XW, Liu W, Xu X, Liu H, Zhao G, Xian M (2012) Optimization of fatty alcohol biosynthesis pathway for selectively enhanced production of C12/14 and C16/18 fatty alcohols in engineered Escherichia coli. Microb Cell Factories 11:65

    Article  CAS  Google Scholar 

  • Zhu K, Zhang Y-M, Rock CO (2009) Transcriptional regulation of membrane lipid homeostasis in Escherichia coli. J Biol Chem 284(50):34880–34888

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31170040, 31200081) and Chinese Academy of Sciences (KGZD-EW-606).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical statement

This article has been prepared following principles of ethical and professional conduct.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 233 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Yu, H. & Zhu, K. Improving alkane synthesis in Escherichia coli via metabolic engineering. Appl Microbiol Biotechnol 100, 757–767 (2016). https://doi.org/10.1007/s00253-015-7026-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7026-y

Keywords

Navigation