Skip to main content
Log in

Domain function dissection and catalytic properties of Listeria monocytogenes p60 protein with bacteriolytic activity

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The major extracellular protein p60 of Listeria monocytogenes (Lm-p60) is an autolysin that can hydrolyze the peptidoglycan of bacterial cell wall and has been shown to be required for L. monocytogenes virulence. The predicted three-dimensional structure of Lm-p60 showed that Lm-p60 could be split into two independent structural domains at the amino acid residue 270. Conserved motif analysis showed that V30, D207, S395, and H444 are the key amino acid residues of the corresponding motifs. However, not only the actual functions of these two domains but also the catalytic properties of Lm-p60 are unclear. We try to express recombinant Lm-p60 and identify the functions of two domains by residue substitution (V30A, D207A, S395A, and H444A) and peptide truncation. The C-terminal domain was identified as catalytic element and N-terminal domain as substrate recognition and binding element. Either N-terminal domain truncation or C-terminal domain truncation presents corresponding biological activity. The catalytic activity of Lm-p60 with a malfunctioned substrate-binding domain was decreased, while the substrate binding was not affected by a mulfunctioned catalytic domain. With turbidimetric method, we determined the optimal conditions for the bacteriolytic activity of Lm-p60 against Micrococcus lysodeikficus. The assay for the effect of Lm-p60 on the bacteriolytic activity of lysozyme revealed that the combined use of Lm-p60 protein with lysozyme showed a strong synergistic effect on the bacteriolytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alcantara EH, Kim DH, Do SI, Lee SS (2007) Bi-functional activities of chimeric lysozymes constructed by domain swapping between bacteriophage T7 and K11 lysozymes. J Biochem Mol Biol 40:539–546

    Article  CAS  PubMed  Google Scholar 

  • Anantharaman V, Aravind L (2003) Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes. Genome Biol 4:R11

    Article  PubMed Central  PubMed  Google Scholar 

  • Bahey-El-Din M, Casey PG, Griffin BT, Gahan CG (2010) Expression of two Listeria monocytogenes antigens (P60 and LLO) in Lactococcus lactis and examination for use as live vaccine vectors. J Med Microbiol 59:904–912

    Article  CAS  PubMed  Google Scholar 

  • Bateman A, Rawlings ND (2003) The CHAP domain: a large family of amidases including GSP amidase and peptidoglycan hydrolases. Trends Biochem Sci 28:234–237

    Article  CAS  PubMed  Google Scholar 

  • Becker SC, Foster-Frey J, Donovan DM (2008) The phage K lytic enzyme LysK and lysostaphin act synergistically to kill MRSA. FEMS Microbiol Lett 287:185–191

    Article  CAS  PubMed  Google Scholar 

  • Bierne H, Cossart P (2007) Listeria monocytogenes surface proteins: from genome predictions to function. Microbiol Mol Biol Rev 71:377–397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boneca IG (2005) The role of peptidoglycan in pathogenesis. Curr Opin Microbiol 8:46–53

    Article  CAS  PubMed  Google Scholar 

  • Boneca IG, Dussurget O, Cabanes D, Nahori MA, Sousa S, Lecuit M, Psylinakis E, Bouriotis V, Hugot JP, Giovannini M, Coyle A, Bertin J, Namane A, Rousselle JC, Cayet N, Prevost MC, Balloy V, Chignard M, Philpottt DJ, Cossart P, Girardin SE (2007) A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system. Proc Natl Acad Sci U S A 104:997–1002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Both D, Steiner EM, Izumi A, Schneider G, Schnell R (2014) RipD (Rv1566c) from Mycobacterium tuberculosis: adaptation of an NlpC/p60 domain to a non-catalytic peptidoglycan-binding function. Biochem J 457:33–41

    Article  PubMed  Google Scholar 

  • Buist G, Steen A, Kok J, Kuipers OP (2008) LysM, a widely distributed protein motif for binding to (peptido)glycans. Mol Microbiol 68:838–847

    Article  CAS  PubMed  Google Scholar 

  • Carroll SA, Hain T, Technow U, Darji A, Pashalidis P, Joseph SW, Chakraborty T (2003) Identification and characterization of a peptidoglycan hydrolase, MurA, of Listeria monocytogenes, a muramidase needed for cell separation. J Bacteriol 185:6801–6808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chandrabos C, Soudja SM, Weinrick B, Gros M, Frangaj A, Rahmoun M, Jacobs WR, Lauvau G (2015) The p60 and NamA autolysins from Listeria monocytogenes contribute to host colonization and induction of protective memory. Cell Microbiol 17:147–163

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Zhang X, Pflugrath JW, Studier FW (1994) The structure of bacteriophage T7 lysozyme, a zinc amidase and an inhibitor of T7 RNA polymerase. Proc Natl Acad Sci U S A 91:4034–4038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Donovan DM (2007) Bacteriophage and peptidoglycan degrading enzymes with antimicrobial applications. Recent Pat Biotechnol 1:113–122

    Article  CAS  PubMed  Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill PC, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Foster SJ (1991) Cloning, expression, sequence analysis and biochemical characterization of an autolytic amidase of Bacillus subtilis 168 trpC2. J Gen Microbiol 137:1987–1998

    Article  CAS  PubMed  Google Scholar 

  • Humann J, Lenz LL (2009) Bacterial peptidoglycan-degrading enzymes and their impact on host muropeptide detection. J Innate Immun 1:88–97

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Humann J, Bjordahl R, Andreasen K, Lenz LL (2007) Expression of the p60 autolysin enhances NK cell activation and is required for Listeria monocytogenes expansion in IFN-γ-responsive mice. J Immunol 178:2407–2414

    Article  CAS  PubMed  Google Scholar 

  • Kamisango K, Saiki I, Tanio Y, Okumura H, Araki Y, Sekikawa I, Azuma I, Yamamura Y (1982) Structures and biological activities of peptidoglycans of Listeria monocytogenes and Propionibacterium acnes. J Biochem (Tokyo) 92:23–33

    CAS  Google Scholar 

  • Kay BK (2012) SH3 domains come of age. FEBS Lett 586:2606–2608

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuhn M, Goebel W (1989) Identification of an extracellular protein of Listeria monocytogenes possibly involved in intracellular uptake by mammalian cells. Infect Immun 57:55–61

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kurushima J, Hayashi I, Sugai M, Tomita H (2013) Bacteriocin protein BacL1 of Enterococcus faecalis is a peptidoglycan D-isoglutamyl-L-lysine endopeptidase. J Biol Chem 288:36915–36925

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lenz LL, Mohammadi S, Geissler A, Portnoy DA (2003) SecA2-dependent secretion of autolytic enzymes promotes Listeria monocytogenes pathogenesis. Proc Natl Acad Sci U S A 100:12432–12437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lesnierowski G, Cegielska-Radziejewska R (2012) Potential possibilities of production, modification and practical application of lysozyme. Acta Sci Pol Technol Aliment 11:223–230

    CAS  PubMed  Google Scholar 

  • Luo X, Cai X (2012) A combined use of autolysin p60 and listeriolysin O antigens induces high protective immune responses against Listeria monocytogenes infection. Curr Microbiol 65:813–818

    Article  CAS  PubMed  Google Scholar 

  • Machata S, Hain T, Rohde M, Chakraborty T (2005) Simultaneous deficiency of both MurA and p60 proteins generates a rough phenotype in Listeria monocytogenes. J Bacteriol 187:8385–8394

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McLaughlan AM, Foster SJ (1997) Characterisation of the peptidoglycan hydrolases of Listeria monocytogenes EGD. FEMS Microbiol Lett 152:149–154

    Article  CAS  PubMed  Google Scholar 

  • Mesnage S, Dellarole M, Baxter NJ, Rouget JB, Dimitrov JD, Wang N, Fujimoto Y, Hounslow AM, Lacroix-Desmazes S, Fukase K, Foster SJ, Williamson MP (2014) Molecular basis for bacterial peptidoglycan recognition by LysM domains. Nat Commun 5:4269. doi:10.1308/ncomms5269

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nelson DC, Schmelcher M, Rodriguez-Rubio L, Klumpp J, Pritchard DG, Dong S, Donovan DM (2012) Endolysins as antimicrobials. Adv Virus Res 83:299–365

    Article  CAS  PubMed  Google Scholar 

  • Pilgrim S, Kolb-Maurer A, Gentschev I, Goebel W, Kuhn M (2003) Deletion of the gene encoding p60 in Listeria monocytogenes leads to abnormal cell division and loss of actin-based motility. Infect Immun 71:3473–3484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Popowska M, Markiewicz Z (2006) Characterization of Listeria monocytogenes protein Lmo0327 with murein hydrolase activity. Arch Microbiol 186:69–86

    Article  CAS  PubMed  Google Scholar 

  • Saksela K, Permi P (2012) SH3 domain ligand binding: what’s the consensus and where’s the specificity? FEBS Lett 586:2609–2614

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, U S A

    Google Scholar 

  • Schmelcher M, Donovan DM, Loessner MJ (2012) Bacteriophage endolysins as novel antimicrobials. Future Microbiol 7:1147–1171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmelcher M, Powell AM, Camp MJ, Pohl CS, Donovan DM (2015) Synergistic streptococcal phage λSA2 and B30 endolysins kill streptococci in cow milk and in a mouse model of mastitis. Appl Microbiol Biotechnol. doi:10.1007/s00253-015-6579-0

    Google Scholar 

  • Schmidt RL, Filak HC, Lemon JD, Potter TA, Lenz LL (2011) A LysM and SH3-domain containing region of the Listeria monocytogenes p60 protein stimulates accessory cells to promote activation of host NK cells. PLoS Pathog 7, e1002368

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sijts AJ, Pilip I, Pamer EG (1997) The Listeria monocytogenes-secreted p60 protein is an N-end rule substrate in the cytosol of infected cells. J Biol Chem 272:19261–19268

    Article  CAS  PubMed  Google Scholar 

  • Steen A, Buist G, Horsburgh GJ, Venema G, Kuipers OP, Foster SJ, Kok J (2005) AcmA of Lactococcus lactis is an N-acetylglucosaminidase with an optimal number of LysM domains for proper functioning. FEBS J 272:2854–2868

    Article  CAS  PubMed  Google Scholar 

  • Sukhithasri V, Nisha N, Biswas L, Anil Kumar V, Biswas R (2013) Innate immune recognition of microbial cell wall components and microbial strategies to evade such recognitions. Microbiol Res 168:396–406

    Article  CAS  PubMed  Google Scholar 

  • Szweda P, Schielmann M, Kotlowski R, Gorczyca G, Zalewska M, Milewski S (2012) Peptidoglycan hydrolases-potential weapons against Staphylococcus aureus. Appl Microbiol Biotechnol 96:1157–1174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Uehara A, Fujimoto Y, Kawasaki A, Kusumoto S, Fukase K, Takada H (2006) Meso-diaminopimelic acid and meso-lanthionine, amino acids specific to bacterial peptidoglycans, activate human epithelial cells through NOD1. J Immunol 177:1796–1804

    Article  CAS  PubMed  Google Scholar 

  • Visweswaran GRR, Dijkstra BW, Kok J (2011) Murein and pseudomurein cell wall binding domains of bacteria and archaea-a comparative view. Appl Microbiol Biotechnol 92:921–928

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Visweswaran GRR, Dijkstra BW, Kok J (2012) A genetically engineered protein domain binding to bacterial murein, archaeal pseudomurein, and fungal chitin cell wall material. Appl Microbiol Biotechnol 96:729–737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Visweswaran GRR, Leenhouts K, van Roosmalen M, Kok J, Buist G (2014) Exploiting the peptidoglycan-binding motif, LysM, for medical and industrial applications. Appl Microbiol Biotechnol 98:4331–4345

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wong JE, Alsarraf HM, Kaspersen JD, Pedersen JS, Stougaard J, Thirup S, Blaise M (2014) Cooperative binding of LysM domains determines the carbohydrate affinity of a bacterial endopeptidase protein. FEBS J 281:1196–1208

    Article  CAS  PubMed  Google Scholar 

  • Wuenscher MD, Kohler S, Bubert A, Gerike U, Goebel W (1993) The iap gene of Listeria monocytogenes is essential for cell viability, and its gene product, p60, has bacteriolytic activity. J Bacteriol 175:3491–3501

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xin X, Gfeller D, Cheng J, Tonikian R, Sun L, Guo A, Lopez L, Pavlenco A, Akintobi A, Zhang Y, Rual JF, Currell B, Seshagiri S, Hao T, Yang X, Shen YA, Salehi-Ashtiani K, Li J, Cheng AT, Bouamalay D, Lugari A, Hill DE, Grimes ML, Drubin DG, Grant BD, Vidal M, Boone C, Sidhu SS, Bader GD (2013) SH3 interactome conserves general function over specific form. Mol Syst Biol 9:652. doi:10.1038/msb.2013.9

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu Q, Abdubek P, Astakhova T, Axelrod HL, Bakolitsa C, Cai X, Carlton D, Chen C, Chiu HJ, Chiu M, Clayton T, Das D, Deller MC, Duan L, Ellrott K, Farr CL, Feuerhelm J, Grant JC, Grzechnik A, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Krishna SS, Kumar A, Lam WW, Marciano D, Miller MD et al (2010) Structure of the γ-D-glutamyl-L-diamino acid endopeptidase YkfC from Bacillus cereus in complex with L-Ala-γ-D-Glu: insights into substrate recognition by NlpC/P60 cysteine peptidases. Acta Crystallogr Sect F: Struct Biol Cryst Commun 66:1354–1364

    Article  CAS  Google Scholar 

  • Xu Q, Chiu HJ, Farr CL, Jaroszewski L, Knuth MW, Miller MD, Lesley SA, Godzik A, Elsliger MA, Deacon AM, Wilson IA (2014) Structures of a bifunctional cell wall hydrolase CwlT containing a novel bacterial lysozyme and an NlpC/P60 DL-endopeptidase. J Mol Biol 426:169–184

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Professor Trinad Chakraborty and Professor Guoqiang Zhu for their generously providing L. monocytogenes and B. subtilis strains, respectively. We are obliged to the anonymous reviewers of Appl Microbiol Biotechnol for their constructive comments.

Funding

This work was funded in part by the National Science Foundation of China (30870054, 31170073), Jiangsu Key Laboratory of Zoonosis, and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Conflict of interest

All the authors of this paper declare they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participant or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minliang Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Zuo, J., Gu, H. et al. Domain function dissection and catalytic properties of Listeria monocytogenes p60 protein with bacteriolytic activity. Appl Microbiol Biotechnol 99, 10527–10537 (2015). https://doi.org/10.1007/s00253-015-6967-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6967-5

Keywords

Navigation