Skip to main content
Log in

Improving survival and storage stability of bacteria recalcitrant to freeze-drying: a coordinated study by European culture collections

  • Methods and protocols
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The objective of this study is to improve the viability after freeze-drying and during storage of delicate or recalcitrant strains safeguarded at biological resource centers. To achieve this objective, a joint experimental strategy was established among the different involved partner collections of the EMbaRC project (www.embarc.eu). Five bacterial strains considered as recalcitrant to freeze-drying were subjected to a standardized freeze-drying protocol and to seven agreed protocol variants. Viability of these strains was determined before and after freeze-drying (within 1 week, after 6 and 12 months, and after accelerated storage) for each of the protocols. Furthermore, strains were exchanged between partners to perform experiments with different freeze-dryer-dependent parameters. Of all tested variables, choice of the lyoprotectant had the biggest impact on viability after freeze-drying and during storage. For nearly all tested strains, skim milk as lyoprotectant resulted in lowest viability after freeze-drying and storage. On the other hand, best freeze-drying and storage conditions were strain and device dependent. For Aeromonas salmonicida CECT 894T, best survival was obtained when horse serum supplemented with trehalose was used as lyoprotectant, while Aliivibrio fischeri LMG 4414T should be freeze-dried in skim milk supplemented with marine broth in a 1:1 ratio. Freeze-drying Campylobacter fetus CIP 53.96T using skim milk supplemented with trehalose as lyoprotectant resulted in best recovery. Xanthomonas fragariae DSM 3587T expressed high viability after freeze-drying and storage for all tested lyoprotectants and could not be considered as recalcitrant. In contrary, Flavobacterium columnare LMG 10406T did not survive the freeze-drying process under all tested conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Broadbent JR, Lin C (1999) Effect of heat shock or cold shock treatment on the resistance of Lactococcus lactis to freezing and lyophilization. Cryobiology 39(1):88–102

    Article  CAS  PubMed  Google Scholar 

  • Carvalho AS, Silva J, Ho P, Teixeira P, Malcata FX, Gibbs P (2002) Survival of freeze-dried Lactobacillus plantarum and Lactobacillus rhamnosus during storage in the presence of protectants. Biotechnol Lett 24(19):1587–1591

    Article  CAS  Google Scholar 

  • Carvalho AS, Silva J, Ho P, Teixeira P, Malcata FX, Gibbs P (2003a) Effect of various growth media upon survival during storage of freeze-dried Enterococcus faecalis and Enterococcus durans. J Appl Microbiol 94(6):947–952

    Article  CAS  PubMed  Google Scholar 

  • Carvalho AS, Silva J, Ho P, Teixeira P, Malcata FX, Gibbs P (2003b) Effects of addition of sucrose and salt, and of starvation upon thermotolerance and survival during storage of freeze-dried Lactobacillus delbrueckii ssp bulgaricus. J Food Sci 68(8):2538–2541

    Article  CAS  Google Scholar 

  • Carvalho AS, Silva J, Ho P, Teixeira P, Malcata FX, Gibbs P (2004) Effects of various sugars added to growth and drying media upon thermotolerance and survival throughout storage of freeze-dried Lactobacillus delbrueckii ssp bulgaricus. Biotechnol Prog 20(1):248–254

    Article  CAS  PubMed  Google Scholar 

  • Conrad PB, Miller DP, Cielenski PR, de Pablo JJ (2000) Stabilization and preservation of Lactobacillus acidophilus in saccharide matrices. Cryobiology 41(1):17–24

    Article  CAS  PubMed  Google Scholar 

  • Costa E, Usall J, Teixido N, Garcia N, Vinas I (2000) Effect of protective agents, rehydration media and initial cell concentration on viability of Pantoea agglomerans strain CPA-2 subjected to freeze-drying. J Appl Microbiol 89(5):793–800

    Article  CAS  PubMed  Google Scholar 

  • de Valdez GF, de Giori GS, de Ruiz Holgado AP, Oliver G (1985a) Effect of drying medium on residual moisture content and viability of freeze-dried lactic acid bacteria. Appl Environ Microbiol 49(2):413–415

    PubMed Central  PubMed  Google Scholar 

  • de Valdez GF, de Giori GS, de Ruiz Holgado AP, Oliver G (1985b) Effect of the rehydration medium on the recovery of freeze-dried lactic acid bacteria. Appl Environ Microbiol 50(5):1339–1341

    PubMed Central  PubMed  Google Scholar 

  • Desolme B, Bernardet JF (1996) Freeze-drying of Flavobacterium columnare, Flavobacterium psychrophilum and Flexibacter maritimus. Dis Aquat Org 27(1):77–80

    Article  Google Scholar 

  • Fonseca F, Passot S, Cunin O, Marin M (2004) Collapse temperature of freeze-dried Lactobacillus bulgaricus suspensions and protective media. Biotechnol Prog 20(1):229–238

    Article  CAS  PubMed  Google Scholar 

  • Heylen K, Hoefman S, Vekeman B, Peiren J, De Vos P (2012) Safeguarding bacterial resources promotes biotechnological innovation. Appl Microbiol Biotechnol 94(3):565–574. doi:10.1007/s00253-011-3797-y

    Article  CAS  PubMed  Google Scholar 

  • Hoefman S, Van Hoorde K, Boon N, Vandamme P, De Vos P, Heylen K (2012) Survival or revival: Long-term preservation induces a reversible viable but non-culturable state in methane-oxidizing bacteria. Plos One 7(4). doi:10.1371/journal.pone.0034196

  • Leslie SB, Israeli E, Lighthart B, Crowe JH, Crowe LM (1995) Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol 61(10):3592–3597

    PubMed Central  CAS  PubMed  Google Scholar 

  • Malik KA, Lang E (1996) Successful preservation of Campylobacteraceae and related bacteria by liquid-drying under anaerobic conditions. J Microbiol Methods 25(1):37–42

    Article  Google Scholar 

  • Miao S, Mills S, Stanton C, Fitzgerald GF, Roos Y, Ross RP (2008) Effect of disaccharides on survival during storage of freeze dried probiotics. Dairy Sci Technol 88(1):19–30

    Article  CAS  Google Scholar 

  • Ming LC, Rahim RA, Wan HY, Ariff AB (2009) Formulation of protective agents for improvement of Lactobacillus salivarius I 24 survival rate subjected to freeze drying for production of live cells in powderized form. Food Bioprocess Technol 2(4):431–436

    Article  CAS  Google Scholar 

  • Miyamoto-Shinohara Y, Sukenobe J, Imaizumi T, Nakahara T (2008) Survival of freeze-dried bacteria. J Gen Appl Microbiol 54(1):9–24

    Article  CAS  PubMed  Google Scholar 

  • Morgan CA, Herman N, White PA, Vesey G (2006) Preservation of micro-organisms by drying; a review. J Microbiol Methods 66(2):183–193

    Article  CAS  PubMed  Google Scholar 

  • Palmfeldt J, Radstrom P, Hahn-Hagerdal B (2003) Optimisation of initial cell concentration enhances freeze-drying tolerance of Pseudomonas chlororaphis. Cryobiology 47(1):21–29. doi:10.1016/S0011-2240(03)00065-8

    Article  PubMed  Google Scholar 

  • Pehkonen KS, Roos YH, Miao S, Ross RP, Stanton C (2008) State transitions and physicochemical aspects of cryoprotection and stabilization in freeze-drying of Lactobacillus rhamnosus GG (LGG). J Appl Microbiol 104(6):1732–1743

    Article  CAS  PubMed  Google Scholar 

  • Portner DC, Leuschner RGK, Murray BS (2007) Optimising the viability during storage of freeze-dried cell preparations of Campylobacter jejuni. Cryobiology 54(3):265–270

    Article  CAS  PubMed  Google Scholar 

  • Prakash O, Nimonkar Y, Shouche YS (2013) Practice and prospects of microbial preservation. FEMS Microbiol Lett 339(1):1–9. doi:10.1111/1574-6968.12034

    Article  CAS  PubMed  Google Scholar 

  • Saarela M, Virkajarvi I, Alakomi HL, Mattila-Sandholm T, Vaari A, Suomalainen T, Matto J (2005) Influence of fermentation time, cryoprotectant and neutralization of cell concentrate on freeze-drying survival, storage stability, and acid and bile exposure of Bifidobacterium animalis ssp. lactis cells produced without milk-based ingredients. J Appl Microbiol 99(6):1330–1339

    Article  CAS  PubMed  Google Scholar 

  • Sakane T (1997) Viabilities of dried cultures of various bacteria after preservation for over 20 years and their prediction by the accelerated storage test. Microbiol Cult Coll 13(1):1–7

    Google Scholar 

  • Santivarangkna C, Aschenbrenner M, Kulozik U, Foerst P (2011) Role of glassy state on stabilities of freeze-dried probiotics. J Food Sci 76(8):R152–R156. doi:10.1111/j.1750-3841.2011.02347.x

    Article  CAS  PubMed  Google Scholar 

  • Schoug A, Olsson J, Carlfors J, Schnurer J, Hakansson S (2006) Freeze-drying of Lactobacillus coryniformis Si3—effects of sucrose concentration, cell density, and freezing rate on cell survival and thermophysical properties. Cryobiology 53(1):119–127

  • Shao YY, Gao SR, Guo HL, Zhang HP (2014) Influence of culture conditions and preconditioning on survival of Lactobacillus delbrueckii subspecies bulgaricus ND02 during lyophilization. J Dairy Sci 97(3):1270–1280. doi:10.3168/jds. 2013-7536

    Article  CAS  PubMed  Google Scholar 

  • Spengler A, Gross A, Kaltwasser H (1992) Successful freeze storage and lyophilization for preservation of Helicobacter pylori. J Clin Pathol 45(8):737–737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Streeter JG (2003) Effect of trehalose on survival of Bradyrhizobium japonicum during desiccation. J Appl Microbiol 95(3):484–491. doi:10.1046/j.1365-2672.2003.02017.x

    Article  CAS  PubMed  Google Scholar 

  • Tymczyszyn EE, Gomez-Zavaglia A, Disalvo EA (2007) Effect of sugars and growth media on the dehydration of Lactobacillus delbrueckii ssp. bulgaricus. J Appl Microbiol 102(3):845–851

  • Zavaglia AG, Tymczyszyn E, De Antoni G, Disalvo EA (2003) Action of trehalose on the preservation of Lactobacillus delbrueckii ssp bulgaricus by heat and osmotic dehydration. J Appl Microbiol 95(6):1315–1320

    Article  Google Scholar 

  • Zayed G, Roos YH (2004) Influence of trehalose and moisture content on survival of Lactobacillus salivarius subjected to freeze-drying and storage. Process Biochem 39(9):1081–1086

    Article  CAS  Google Scholar 

  • Zhao G, Zhang G (2005) Effect of protective agents, freezing temperature, rehydration media on viability of malolactic bacteria subjected to freeze-drying. J Appl Microbiol 99(2):333–338

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7, 2007–2013), Research Infrastructures action, under the grant agreement No. FP7-228310 (EMbaRC project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jindrich Peiren.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 214 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peiren, J., Buyse, J., De Vos, P. et al. Improving survival and storage stability of bacteria recalcitrant to freeze-drying: a coordinated study by European culture collections. Appl Microbiol Biotechnol 99, 3559–3571 (2015). https://doi.org/10.1007/s00253-015-6476-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6476-6

Keywords

Navigation