Skip to main content
Log in

Lactic acid fermentation within a cascading approach for biowaste treatment

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Limited availability of resources and increased amounts of waste coupled with an ever-increasing demand for raw materials are typical characteristics of our times. As such, there is an urgent need to accordingly update waste treatment technology. The aim of this study was to determine whether a separate treatment of the liquid and the solid fraction of biowaste could enhance overall efficiency. Liquid fractions obtained from two different separation procedures were fermented at a pH of 5 and uncontrolled pH conditions for 72 h. The fermentation conditions leading to highest lactic acid productivity and yield were evaluated. The substrates gained by both separation procedures showed efficient lactic acid production up to <25 g L−1. The pH control increased lactic acid concentration by about 27 %. Furthermore, quantitative real-time PCR analyses revealed stronger Lactobacilli growth in these fermentations. As identified via Illumina sequencing Lactobacillus delbrueckii and its closest relatives seemed to drive the fermentation independent of the substrate. These results could help to improve today’s resourcing concept by providing a separate treatment of the liquid and solid biowaste fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Rahman MA, Tashiro Y, Sonomoto K (2011) Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J Biotechnol 156:286–301. doi:10.1016/j.jbiotec.2011.06.017

    Article  CAS  Google Scholar 

  • Akao S, Tsuno H, Horie T, Mori S (2007) Effects of pH and temperature on products and bacterial community in-lactate batch fermentation of garbage under unsterile condition. Water Res 41:2636–2642. doi:10.1016/j.watres.2007.02.032

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108:4516–4522. doi:10.1073/pnas.1000080107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dreschke G, Probst M, Walter A, Walde J, Pümpel T, Insam H (2015) Lactic acid and methane: Improved exploitation of biowaste potential. Bioresource Technol 176:47–55. doi:10.1016/j.biortech.2014.10.136

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Dusselier M, Van Wouwe P, Dewaele A, Makshina E, Sels BF (2013) Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis. Energy Environ Sci 6:1415–1442. doi:10.1039/C3ee00069a

    Article  CAS  Google Scholar 

  • Endo A, Okada S (2005) Lactobacillus satsumensis sp nov., isolated from mashes of shochu, a traditional Japanese distilled spirit made from fermented rice and other starchy materials. Int J Syst Evol Microbiol 55:83–85. doi:10.1099/ijs.0.63248-0

    Article  CAS  PubMed  Google Scholar 

  • Ge J, Chai Y, Chen L, Ping W (2012) The dynamics of bacteria community diversity during the fermentation process of traditional soybean paste Shengtai Xuebao. Acta Ecol Sin 32:2532–2538. doi:10.5846/stxb201103110295

    Article  CAS  Google Scholar 

  • Hadik P, Szabo LP, Nagy E (2002) D,L-lactic acid and D,L-alanine enantio separation by membrane process. Desalination 148:193–198. doi:10.1016/S0011-9164(02)00697-5

    Article  CAS  Google Scholar 

  • Hidaka T, Asahira T, Koshikawa H, Cheon J, Park Y, Tsuno H (2010) Effect of microbial composition on thermophilic acid fermentation. Enzym Microb Technol 47:127–133. doi:10.1016/j.enzmictec.2010.06.005

    Article  CAS  Google Scholar 

  • Holzapfel W, Wood B (2014) Lactic acid bacteria—biodiversity and taxonomy. Blackwell, Wiley

    Book  Google Scholar 

  • John RP, Nampoothiri KM, Pandey A (2007) Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol 74:524–534. doi:10.1007/s00253-006-0779-6

    Article  CAS  PubMed  Google Scholar 

  • Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120. doi:10.1128/Aem.01043-13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mayrhofer S, Mikoviny T, Waldhuber S, Wagner AO, Innerebner G, Franke-Whittle IH, Mark TD, Hansel A, Insam H (2006) Microbial community related to volatile organic compound (VOC) mission in household biowaste. Environ Microbiol 8:1960–1974. doi:10.1111/j.1462-2920.2006.01076.x

    Article  CAS  PubMed  Google Scholar 

  • Motte JC, Escudie R, Bernet N, Delgenes JP, Steyer JP, Dumas C (2013a) Dynamic effect of total solid content, low substrate/inoculum ratio and particle size on solid-state anaerobic digestion. Bioresource Technol 144:141–148. doi:10.1016/j.biortech.2013.06.057

    Article  CAS  Google Scholar 

  • Motte JC, Trably E, Escudie R, Hamelin J, Steyer JP, Bernet N, Delgenes JP, Dumas C (2013b) Total solids content: a key parameter of metabolic pathways in dry anaerobic digestion. Biotechnol Biofuels. doi:10.1186/1754-6834-6-164

    PubMed Central  PubMed  Google Scholar 

  • Nguyen CM, Kim JS, Nguyen TN, Kim SK, Choi GJ, Choi YH, Jang KS, Kim JC (2013) Production of L- and D-lactic acid from waste Curcuma longa biomass through simultaneous saccharification and cofermentation. Bioresource Technol 146:35–43. doi:10.1016/j.biortech.2013.07.035

    Article  CAS  Google Scholar 

  • Palaniraj R, Nagarajan P (2012) Kinetic studies in production of lactic acid from waste potato starch using Lactobacillus casei. Int J ChemTech Res 4:1601–1614

    CAS  Google Scholar 

  • Partanen P, Hultman J, Paulin L, Auvinen P, Romantschuk M (2010) Bacterial diversity at different stages of the composting process. BMC Microbiol. doi:10.1186/1471-2180-10-94, 10 doi:Artn 94

    PubMed Central  PubMed  Google Scholar 

  • Probst M, Fritschi A, Wagner A, Insam H (2013) Biowaste: a lactobacillus habitat and lactic acid fermentation substrate. Bioresource Technol 143:647–652. doi:10.1016/j.biortech.2013.06.022

    Article  CAS  Google Scholar 

  • Probst M, Walde J, Pümpel T, Wagner AO, Insam H (2015) A closed loop for municipal organic solid waste by lactic acid fermentation. Bioresource Technol 175:142–151

    Article  CAS  Google Scholar 

  • Sakai K, Mori M, Fujii A, Iwami Y, Chukeatirote E, Shirai Y (2004) Fluorescent in situ hybridization analysis of open lactic acid fermentation of kitchen refuse using rRNA-targeted oligonucleotide probes. J Biosci Bioeng 98:48–56. doi:10.1263/Jbb.98.48

    Article  CAS  PubMed  Google Scholar 

  • Sakai K, Murata Y, Yamazumi H, Tau Y, Mori M, Moriguchi M, Shirai Y (2000) Selective proliferation of lactic acid bacteria and accumulation of lactic acid during open fermentation of kitchen refuse with intermittent pH adjustment. Food Sci Technol Res 6:140–145

    Article  Google Scholar 

  • Schloss PD Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi:10.1128/Aem.01541-09

    Article  Google Scholar 

  • Schneider I, Wörle A, Schweitzer P, Probst M, Insam H, Bockreis A (2013) Cascading Approach of Biowaste Treatment to Obtain Value-added Organic By-Products and Biogas. ISWA World Congress Vienna ISBN 978-3-200-03229-3

  • Secchi N, Giunta D, Pretti L, Garcia MR, Roggio T, Mannazzu I, Catzeddu P (2012) Bioconversion of ovine scotta into lactic acid with pure and mixed cultures of lactic acid bacteria. J Ind Microbiol Biotechnol 39:175–181. doi:10.1007/s10295-011-1013-9

    Article  CAS  PubMed  Google Scholar 

  • Silva FC, Serafim LS, Nadais H, Arroja L, Capela I (2013) Acidogenic fermentation towards valorisation of organic waste streams into volatile fatty acids. Chem Biochem Eng Q 27:467–476

    CAS  Google Scholar 

  • Song DJ, Kang HY, Wang JQ, Peng H, Bu DP (2014) Effect of feeding bacillus subtilis natto on hindgut fermentation and microbiota of Holstein dairy cows. Asian Aust J Anim 27:495–502. doi:10.5713/ajas.2013.13522

    Article  CAS  Google Scholar 

  • Walter J, Hertel C, Tannock GW, Lis CM, Munro K, Hammes WP (2001) Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl Environ Microbiol 67:2578–2585

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang LM, Zhao B, Liu B, Yu B, Ma CQ, Su F, Hua DL, Li QG, Ma YH, Xu P (2010) Efficient production of L-lactic acid from corncob molasses, a waste by-product in xylitol production, by a newly isolated xylose utilizing Bacillus sp strain. Bioresource Technol 101:7908–7915. doi:10.1016/j.biortech.2010.05.031

    Article  CAS  Google Scholar 

  • Yesil H, Tugtas AE, Bayrakdar A, Calli B (2014) Anaerobic fermentation of organic solid wastes: volatile fatty acid production and separation. Water Sci Technol 69:2132–2138. doi:10.2166/Wst.2014.132

    Article  CAS  PubMed  Google Scholar 

  • Zang B, He P, Ye N, Shao L (2006) Enhanced isomer purity of lactic acid from the non-sterile fermentation of kitchen wastes. Bioresource Technol 99:855–862

    Article  Google Scholar 

  • Zhao WJ, Sun XH, Wang QH, Ma HZ, Teng Y (2009) Lactic acid recovery from fermentation broth of kitchen garbage by esterification and hydrolysis method. Biomass Bioenerg 33:21–25. doi:10.1016/j.biombioe.2008.04.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We kindly thank Sebastian Waldhuber and Ljubica Begovic for their help in the lab. We also thank Paul Fraiz for improving the English language of the manuscript. This work was financed by the Klima- und Energiefonds (project KR11NE1F00380) in the framework of “Neue Energien 2020” and by the “Nachwuchsförderung” of the Universität Innsbruck. Maraike Probst was partly funded by the doctoral fellowship “Doktoratsstipendium aus der Nachwuchsförderung” and the “Stipendium für österreichische Graduierte” of the Universität Innsbruck.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maraike Probst.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1586 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Probst, M., Walde, J., Pümpel, T. et al. Lactic acid fermentation within a cascading approach for biowaste treatment. Appl Microbiol Biotechnol 99, 3029–3040 (2015). https://doi.org/10.1007/s00253-015-6414-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6414-7

Keywords

Navigation