Skip to main content

Advertisement

Log in

Impact of elevated CO2 and N addition on bacteria, fungi, and archaea in a marsh ecosystem with various types of plants

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The individual effects of either elevated CO2 or N deposition on soil microbial communities have been widely studied, but limited information is available regarding the responses of the bacteria, fungi, and archaea communities to both elevated CO2 and N in wetland ecosystems with different types of plants. Using a terminal restriction fragment length polymorphism (T-RFLP) analysis and real-time quantitative PCR (RT-Q-PCR), we compared communities of bacteria, fungi, and archaea in a marsh microcosm with one of seven macrophytes, Typha latifolia, Phragmites japonica, Miscanthus sacchariflorus, Scirpus lacustris, Juncus effusus, Phragmites australis, or Zizania latifolia, after exposing them to eCO2 and/or amended N for 110 days. Overall, our results showed that the elevated CO2 and N may affect the bacterial and archaeal communities, while they may not affect the fungal community in terms of both diversity and abundance. The effects of elevated CO2 and N on microbial community vary depending on the plant types, and each microbial community shows different responses to the elevated CO2 and N. In particular, elevated CO2 might force a shift in the archaeal community irrespective of the plant type, and the effect of elevated CO2 was enhanced when combined with the N effect. This study indicates that elevated CO2 and N addition could lead to changes in the community structures of bacteria and archaea. Our results also suggest that the fungal group is less sensitive to external changes, while the bacterial and archaeal groups are more sensitive to them. Finally, the characteristics of the plant type and relevant physicochemical factors induced by the elevated CO2 and N may be important key factors structuring the microbial community’s response to environmental change, which implies the need for a more comprehensive approach to understanding the pattern of the wetland response to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andresen LC, Dungait JAJ, Bol R, Selsted MB, Ambus P, Michelsen A (2014) Bacteria and fungi respond differently to multifactorial climate change in a temperate heathland, traced with 13C-glycine and FACE CO2. PLoS ONE 9(1):e85070

    Article  PubMed Central  PubMed  Google Scholar 

  • Blagodatskaya E, Blagodatsky S, Dorodnikov M, Kuzyakov Y (2010) Elevated CO2 increases microbial growth rates in soil: results of three CO2 enrichment experiments. Glob Change Biol 16:836–848

    Article  Google Scholar 

  • Bomberg M, Timonen S (2009) Effect of tree species and mycorrhizal colonization on the archaeal population of boreal forest rhizospheres. Appl Environ Microbiol 75:308–315

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bowen JL, Ward BB, Morrison HG, Hobbie JE, Valiela I, Deegan LA, Sogin ML (2011) Microbial community composition in sediments resists perturbation by nutrient enrichment. ISME J 5:1540–1548

    Article  PubMed Central  PubMed  Google Scholar 

  • Box JD (1983) Investigation of the Folin-Ciocalteu phenol reagent for the determination of polyphenolic substrates in natural waters. Water Res 17:511–525

    Article  CAS  Google Scholar 

  • Bragazza L, Buttler A, Habermacher J, Brancaleoni L, Gerdo R, Fritze H, Hanajik P, Raiho L, Johnson D (2012) High nitrogen deposition alters the decomposition of bog plant litter and reduces carbon accumulation. Glob Change Biol 18:1163–1172

    Article  Google Scholar 

  • Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74:738–744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brussaarda L, de Ruiterb PC, Brown GG (2007) Soil biodiversity for agricultural sustainability. Agr Ecosyst Environ 121:233–244

    Article  Google Scholar 

  • Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW (2010) Soil microbial community response to multiple experimental climate change drivers. Appl Environ Microbiol 76:999–1007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chigineva NI, Aleksandrova AV, Tiunov AV (2009) The addition of labile carbon alters litter fungal communities and decreases litter decomposition rates. Appl Soil Ecol 42:264–270

    Article  Google Scholar 

  • Chung H, Zak DR, Reich PB, Ellsworth DS (2007) Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function. Glob Change Biol 13:980–989

    Article  Google Scholar 

  • de Graaff M, Classen AT, Castro HF, Schadt CW (2010) Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates. New Phytol 188:1055–1064

    Article  PubMed  Google Scholar 

  • Deng Y, He Z, Xu M, Qin Y, Van Nostrand JD, Wu L, Roe BA, Wiley G, Hobbie SE, Reich PB, Zhou J (2012) Elevated carbon dioxide alters the structures of soil microbial communities. Appl Environ Microbiol 78:2991–2995

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Drigo B, van Veen JA, Kowalchuk G (2009) Specific rhizosphere bacterial and fungal groups respond differently to elevated atmosphere CO2. ISME J 3:1204–1217

    Article  CAS  PubMed  Google Scholar 

  • Dunbar J, Eichost SA, Gallegos-Graves LV, Silva S, Xie G, Hengartner NW, Evans RD, Hungate BA, Jackson RB, Megonigal JP, Schadt CW, Vilgalys R, Zak DR, Kuske CR (2012) Common bacterial responses in six ecosystems exposed to 10 years of elevated atmospheric carbon dioxide. Environ Microbiol 14:1145–1158

    Article  CAS  PubMed  Google Scholar 

  • Edwards IP, Zak DR (2011) Fungal community composition and function after long-term exposure of northern forests to elevated atmospheric CO2 and tropospheric O3. Glob Change Biol 17:2184–2195

    Article  Google Scholar 

  • Edwards KJ, Gihring TM, Banfield JF (1999) Seasonal variations in microbial populations and environmental conditions in an extreme acid mine drainage environment. Appl Environ Microbiol 65:3627–3632

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eisenhauer N, Cesarz S, Koller R, Worm K, Reich PB (2012) Global change belowground: impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity. Glob Change Biol 18:435–447

    Article  Google Scholar 

  • Eisenlord SD, Freedman Z, Zak DR, Xue K, He Z, Zhou J (2013) Microbial mechanisms mediating increased soil C storage under elevated atmospheric N deposition. Appl Environ Microbiol 79:1191–1199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fenner N, Ostle NJ, McNamara N, Sparks T, Harmens H, Reynolds B, Freeman C (2007) Elevated CO2 Effects on peatland plant community carbon dynamics and DOC production. Ecosystems 10:635–647

    Article  CAS  Google Scholar 

  • Freeman C, Liska G, Ostle N, Jones SE, Lock MA (1995) The use of fluorogenic substrates for measuring enzyme activity in peatlands. Plant Soil 175:147–152

    Article  CAS  Google Scholar 

  • Freeman C, Ostle N, Kang H (2001) An enzymic ‘latch’ on a global carbon store. Nature 409:149

    Article  CAS  PubMed  Google Scholar 

  • Freeman C, Kim S-Y, Lee S-H, Kang H (2004a) Effects of elevated atmospheric CO2 concentrations on soil microorganisms. J Microbiol 42:267–277

    CAS  PubMed  Google Scholar 

  • Freeman C, Fenner N, Ostle NJ, Kang H, Dowrick DJ, Reynolds B, Lock MA, Sleep D, Hughes S, Hudson J (2004b) Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature 430:195–198

    Article  CAS  PubMed  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Ge Y, Chen C, Xu Z, Oren R, He J-Z (2010) The spatial factor, rather than elevated CO2, controls the soil bacterial community in a temperate forest ecosystem. Appl Environ Microbiol 76:7429–7436

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Großkopf R, Janssen PH, Liesack W (1998) Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl Environ Microbiol 64:960–969

    PubMed Central  PubMed  Google Scholar 

  • Gutknecht JLM, Field CB, Balser TC (2012) Microbial communities and their responses to simulated global change fluctuate greatly over multiple years. Glob Change Biol 18:2256–2269

    Article  Google Scholar 

  • Hayden HL, Mele PM, Bougoure DS, Allan CY, Norng S, Piceno YM, Brodie EL, Desantis TZ, Andersen GL, Williams AL, Hovenden MJ (2012) Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO2 and warming in an Australian native grassland soil. Environ Microbiol 14:3081–3096

    Article  CAS  PubMed  Google Scholar 

  • He Z, Piceno Y, Dent Y, Xu M, Lu Z, DeSantis T, Andersen G, Hobbie SE, Reich PB, Zhou J (2012) The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide. ISME J 6:259–272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2007) Climate Change 2007. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Karlsson AE, Johansson T, Bengtson P (2012) Archaeal abundance in relation to root and fungal exudation rates. FEMS Microbiol Ecol 80:305–311

    Article  CAS  PubMed  Google Scholar 

  • Ke X, Lu Y (2014) Conrad R (2014) Different behaviour of methanogenic archaea and Thaumarchaeota in rice field microcosms. FEMS Microbiol Ecol 87:18–29

    Article  CAS  PubMed  Google Scholar 

  • Kim S-Y, Kang H (2008) Effects of elevated CO2 on below-ground processes in temperate marsh microcosm. Hydrobiology 605:123–130

    Article  CAS  Google Scholar 

  • Kim S-Y, Lee S-H, Freeman C, Fenner N, Kang H (2008) Comparative analysis of soil microbial communities and their responses to the short-term drought in bog, fen, and riparian wetlands. Soil Biol Biochem 40:2874–2880

    Article  CAS  Google Scholar 

  • Kim S-Y, Freeman C, Fenner N, Kang H (2012) Functional and structural responses of bacterial and methanogen communities to 3-year warming incubation in different depths of peat mire. Appl Soil Ecol 57:23–30

    Article  Google Scholar 

  • Kjøller AH, Struew S (2002) Fungal communities, succession, enzymes, and decomposition. In: Burns RG, Dick RP (eds) Enzymes in the environment: activity, ecology, and applications. Marcel Dekker Inc., New York, pp 305–324

    Google Scholar 

  • Koranda M, Kaiser C, Fuchslueger L, Kitzler B, Sessitsch A, Zechmeister-Boltenstern S, Richter A (2014) Fungal and bacterial utilization of organic substrates depends on substrate complexity and N availability. FEMS Microbiol Ecol 87:142–152

    Article  CAS  PubMed  Google Scholar 

  • Kuzyakov Y (2002) Review: factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci 165:382–396

    Article  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrant E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  • Langley JA, Megonigal JP (2010) Ecosystem response to elevated CO2 level limited by nitrogen-induced plant species shift. Nature 466:96–99

    Article  CAS  PubMed  Google Scholar 

  • Lee S-H, Kim S-Y, Kang H (2012) Effects of elevated CO2 on communities of denitrifying bacteria and methanogens in a temperate marsh microcosm. Microbial Ecol 64:485–498

    Article  CAS  Google Scholar 

  • Lesaulnier C, Papamichail D, McCorkle S, Ollivier B, Skiena S, Taghavi S, Zak D, van der Lelie D (2008) Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen. Environ Microbiol 10:926–941

    Article  CAS  PubMed  Google Scholar 

  • Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, Roulet N, Rydin H (2008) Schaepman-Strub G. Peatlands and the carbon cycle: from local processes to global implications—a synthesis. Biogeosciences 5:1475–1491

    Article  CAS  Google Scholar 

  • Llirós M, Trias R, Borrego C, Bañeras L (2014) Specific archaeal communities are selected on the root surfaces of Ruppia spp. and Phragmites australis. Wetland 34:403–411

    Article  Google Scholar 

  • Long X, Chen C, Xu Z, Oren R, He J-Z (2012) Abundance and community structure of ammonia-oxidizing bacteria and archaea in a temperate forest ecosystem under ten-years elevated CO2. Soil Biol Biochem 46:163–171

    Article  CAS  Google Scholar 

  • Marschner P, Yang CH, Lieberei R, Crowley DE (2001) Soil and plant species effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33:1437–1445

    Article  CAS  Google Scholar 

  • McCann KS (2000) The diversity-stability debate. Nature 405:228–233

    Article  CAS  PubMed  Google Scholar 

  • Nelson DM, Cann IKO, Mackie RI (2010) Response of archaeal communities in the rhizosphere of maize and soybean to elevated atmospheric CO2 concentrations. PLoS One 5:e15897

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Offere P, Spang A, Schleper C (2013) Archaea in biogeochemical cycles. Annu Rev Microbiol 67:437–457

    Article  Google Scholar 

  • Peng X, Yando E, Hildebrand E, Dwyer C, Kearney A, Waciega A, Valiela I, Bernhard AE (2013) Differential responses of ammonia-oxidizing archaea and bacteria to long-term fertilization in a New England salt marsh. Front Microbiol 3:445–455

    Article  PubMed Central  PubMed  Google Scholar 

  • Ramirez KS, Craine JM, Fierer N (2012) Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob Change Biol 18:1918–1927

    Article  Google Scholar 

  • Rasche F, Knapp D, Kaiser C, Koranda M, Kitzler B, Zechmeister-Boltenstern S, Richter A, Sessitsch A (2011) Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest. ISME J 5:389–402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schimel JP, Gulledge J (1998) Microbial community structure and global trace gases. Glob Change Biol 4:745–758

    Article  Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stahl DA, Amann R (1991) Development and application of nucleic acid probes in bacterial systematics. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley and Sons, New York, NY, pp 205–248

    Google Scholar 

  • Swan BK, Ehrhardt CJ, Reifel KM, Moreno LI, Valentine DL (2010) Archaeal and bacterial communities respond differently to environmental gradients in anoxic sediments of a California hypersaline lake, the Salton sea. Appl Environ Microbiol 76:757–768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takai K, Horikoshi K (2000) Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol 66:5066–5072

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Toberman H, Freeman C, Evans C, Fenner N, Artz RRE (2008) Summer drought decreases soil fungal diversity and associated phenol oxidase activity in upland Calluna heathland soil. FEMS Microbiol Ecol 66:426–436

    Article  CAS  PubMed  Google Scholar 

  • Vale M, Nguyen C, Dambrine E, Dupouey JL (2005) Microbial activity in the rhizosphere soil of six herbaceous species cultivated in a greenhouse is correlated with shoot biomass and root C concentrations. Soil Biol Biochem 37:2329–2333

    Article  CAS  Google Scholar 

  • Wang Y, Gu J-D (2013) Higher diversity of ammonia/ammonium-oxidizing prokaryotes in constructed freshwater wetland than natural coastal marine wetland. Appl Microbiol Biotechnol 97:7015–7033

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Y, Feng Y-Y, Ma X-J, Gu J-D (2013) Seasonal changes of ammonia/ammonium oxidizing prokaryotes (AOPs) in the oxic and anoxic sediments of mangrove wetland. Appl Microbiol Biotechnol 97:7919–7934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weber CF, Zak DR, Hungate BA, Jackson RB, Vilgalys R, Evans RD, Schadt CW, Megonigal JP, Kuske CR (2011) Response of soil cellulolytic fungal communities to elevated atmospheric CO2 are complex and variable across five ecosystems. Environ Microbiol 13:2778–2793

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns TD, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press Inc., New York, pp 315–324

    Chapter  Google Scholar 

  • Yang H-S, Kim C (2007) The riparian vegetation of close-to-nature river and streams in Korea. Kor J Plant Res 20:234–241

    Google Scholar 

Download references

Acknowledgments

This study was supported by NRF (2011-0030040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hojeong Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, SH., Kim, SY., Ding, W. et al. Impact of elevated CO2 and N addition on bacteria, fungi, and archaea in a marsh ecosystem with various types of plants. Appl Microbiol Biotechnol 99, 5295–5305 (2015). https://doi.org/10.1007/s00253-015-6385-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6385-8

Keywords

Navigation