Skip to main content
Log in

Isolation of a novel beta-cypermethrin degrading strain Bacillus subtilis BSF01 and its biodegradation pathway

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Continuous use of the pyrethroid insecticide beta-cypermethrin (beta-cp) has resulted in serious environmental contamination problems. We report here that a novel bacterial strain BSF01, which was isolated from activated sludge and identified as Bacillus subtilis (collection number: CCTCC AB 2014103), showed high efficiency in degrading beta-cp. Strain BSF01 was able to utilize beta-cp as the sole carbon source for growth and degraded 89.4 % of 50 mg L−1 beta-cp within 7 days. The optimal conditions for beta-cp degradation were determined to be 34.5 °C, pH 6.7, and inocula amount 0.11 g dry wt L−1 using response surface methodology. The kinetic parameters q max, K s, and K i were established to be 2.19 day−1, 76.37 mg L−1, and 54.14 mg L−1, respectively. The critical inhibitor concentration was determined to be 64.30 mg L−1. Seven metabolites were identified by gas chromatography–mass spectrometry. Furthermore, a novel biodegradation pathway for beta-cp was proposed on the basis of analysis of the metabolites. This strain was also capable of degrading a wide range of pyrethroid insecticides including cypermethrin, deltamethrin, cyhalothrin, and beta-cyfluthrin, which similar to beta-cp are hazardous chemicals. Taken together, our results depict the biodegradation pathway of beta-cp and highlight the promising potentials of strain BSF01 in bioremediation of pyrethroid-contaminated environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ansari AR, Rahman S, Kaur M, Anjum S, Raisuddin S (2011) In vivo cytogenetic and oxidative stress-inducing effects of cypermethrin in freshwater fish. Channa punctata Bloch Ecotox Environ Safe 74:150–156

    Article  CAS  Google Scholar 

  • Anwar S, Liaquat F, Khan QM, Khalid ZM, Iqbal S (2009) Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1. J Hazard Mater 168:400–405

    Article  CAS  PubMed  Google Scholar 

  • Arora PK (2012) Decolourization of 4-chloro-2-nitrophenol by a soil bacterium, Bacillus subtilis RKJ 700. PLoS One 7:e52012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arora PK, Sasikala C, Ramana CV (2012) Degradation of chlorinated nitroaromatic compounds. Appl Microbiol Biotechnol 93:2265–2277

    Article  CAS  PubMed  Google Scholar 

  • Chen SH, Lai KP, Li YN, Hu MY, Zhang YB, Zeng Y (2011a) Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-01. Appl Microbiol Biotechnol 90:1471–1483

    Article  CAS  PubMed  Google Scholar 

  • Chen SH, Yang L, Hu MY, Liu JJ (2011b) Biodegradation of fenvalerate and 3-phenoxybenzoic acid by a novel Stenotrophomonas sp. strain ZS-S-01 and its use in bioremediation of contaminated soils. Appl Microbiol Biotechnol 90:755–767

    Article  CAS  PubMed  Google Scholar 

  • Chen SH, Hu MY, Liu JJ, Zhong GH, Yang L, Rizwan-ul-Haq M, Han HT (2011c) Biodegradation of betacypermethrin and 3-phenoxybenzoic acid by a novel Ochrobactrum lupini DG-S-01. J Hazard Mater 187:433–440

  • Chen SH, Luo JJ, Hu MY, Geng P, Zhang YB (2012) Microbial detoxification of bifenthrin by a novel yeast and its potential for contaminated soils treatment. PLoS One 7:e30862

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen SH, Dong YH, Chang CQ, Deng YY, Zhang XF, Zhong GH, Song HW, Hu MY, Zhang LH (2013a) Characterization of a novel cyfluthrin-degrading bacterial strain Brevibacterium aureum and its biochemical degradation pathway. Bioresour Technol 132:16–23

    Article  CAS  PubMed  Google Scholar 

  • Chen SH, Lin QS, Xiao Y, Deng YY, Chang CQ, Zhong GH, Hu MY, Zhang LH (2013b) Monooxygenase, a novel beta-cypermethrin degrading enzyme from Streptomyces sp. PLoS One 8:e75450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen SH, Chang CQ, Deng YY, An SW, Dong YH, Zhou JN, Hu MY, Zhong GH, Zhang LH (2014) Fenpropathrin biodegradation pathway in Bacillus sp. DG-02 and its potentials for bioremediation of pyrethroid-contaminated soils. J Agric Food Chem 62:2147–2157

    Article  CAS  PubMed  Google Scholar 

  • Coats JR, Symonik DM, Bradbury SP, Dyer SD, Timson LK, Atchison GJ (1989) Toxicology of synthetic pyrethroids in aquatic organisms: an overview. Environ Toxicol Chem 8:671–679

    Article  CAS  Google Scholar 

  • Cycoń M, Wójcik M, Piotrowska-Seget Z (2011) Biodegradation kinetics of the benzimidazole fungicide thiophanate-methyl by bacteria isolated from loamy sand soil. Biodegradation 22:573–583

    Article  PubMed  Google Scholar 

  • Cycoń M, Zmijowska A, Piotrowska-Seget Z (2014) Enhancement of deltamethrin degradation by soil bioaugmentation with two different strains of Serratia marcescens. Int J Environ Sci Technol 11:1305–1316

    Article  Google Scholar 

  • Dubey KK, Fulekar MH (2013) Investigation of potential rhizospheric isolate for cypermethrin degradation. 3 Biotech 3:33–43

    Article  PubMed Central  Google Scholar 

  • Fan X, Liu X, Huang R, Liu Y (2012) Identification and characterization of a novel thermostable pyrethroid-hydrolyzing enzyme isolated through metagenomic approach. Microb Cell Fact 11:33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fenlon AK, Jones CK, Semple TK (2011) The effect of soil: water ratios on the induction of isoproturon, cypermethrin and diazinon mineralisation. Chemosphere 82:163–168

    Article  CAS  PubMed  Google Scholar 

  • Gong QW, Zhang C, Lu FX, Zhao HZ, Bie XM, Lu ZX (2014) Identification of bacillomycin D from Bacillus subtilis fmbJ and its inhibition effects against Aspergillus flavus. Food Control 36:8–14

    Article  CAS  Google Scholar 

  • Gunasekar V, Gowdhaman D, Ponnusami V (2013) Biodegradation of reactive red M5B dye using Bacillus subtilis. Biodegradation 5:131–135

    CAS  Google Scholar 

  • Guo P, Wang BZ, Hang BJ, Li L, Ali SW, He J, Li SP (2009) Pyrethroid-degrading Sphingobium sp. JZ-2 and the purification and characterization of a novel pyrethroid hydrolase. Int Biodeter Biodegr 63:1107–1112

    Article  CAS  Google Scholar 

  • Halden RU, Tepp SM, Halden BG, Dwyer DF (1999) Degradation of 3-phenoxybenzoic acid in soil by Pseudomonas pseudoalcaligenes POB310 (pPOB) and two modified Pseudomonas strains. Appl Environ Microbiol 65:3354–3359

    PubMed Central  CAS  PubMed  Google Scholar 

  • Holt JG, Krieg NR, Sneath PH, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Willian and Wilkins, Baltimore

    Google Scholar 

  • Hosseini-Parvar SH, Keramat J, Kadivar M, Khanipour E, Motamedzadegan A (2009) Optimising conditions for enzymatic extraction of edible gelatin from the cattle bones using response surface methodology. Int J Food Sci Technol 44:467–475

    Article  CAS  Google Scholar 

  • Jin YX, Zheng SS, Fu ZW (2011) Embryonic exposure to cypermethrin induces apoptosis and immunotoxicity in zebrafish (Danio rerio). Fish Shellfish Immun 30:1049–1054

    Article  CAS  Google Scholar 

  • Karpouzas DG, Walker A (2000) Factors influencing the ability of Pseudomonas putida epI to degrade ethoprophos in soil. Soil Biol Biochem 32:1753–1762

    Article  CAS  Google Scholar 

  • Khuri AI, Mukhopadhyay S (2010) Response surface methodology. Wiley Interdiscip Rev Comput Stat 2:128–149

    Article  Google Scholar 

  • Laffin B, Chavez M, Pine M (2010) The pyrethroid metabolites 3-phenoxybenzoic acid and 3-phenoxybenzyl alcohol do not exhibit estrogenic activity in the MCF-7 human breast carcinoma cell line or Sprague-Dawley rats. Toxicology 267:39–44

    Article  CAS  PubMed  Google Scholar 

  • Lin QS, Chen SH, Hu MY, Rizwan-ul-Haq M, Yang L, Li H (2011) Biodegradation of cypermethrin by a newly isolated actinomycetes HU-S-01 from wastewater sludge. Int J Environ Sci Technol 8:45–56

    Article  CAS  Google Scholar 

  • Liu F, Chi Y, Wu S, Jia DY, Yao K (2014) Simultaneous degradation of cypermethrin and its metabolite 3-phenoxybenzoic acid by the cooperation of Bacillus licheniformis B-1 and Sphingomonas sp. SC-1. J Agric Food Chem 62:8256–8262

    Article  CAS  PubMed  Google Scholar 

  • McKinlay R, Plant JA, Bell JN, Voulvoulis N (2008) Endocrine disrupting pesticides: implications for risk assessment. Environ Int 34:168–183

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra S, Ahuja AK, Sharma D (2007) Persistence of bifenthrin residues on mango (Mangifera indica) fruit. Pestic Res J 19:110–112

    CAS  Google Scholar 

  • Narahashi T, Ginsburg KS, Nagata K, Song JH, Tatebayashi H (1998) Ion channels as targets for insecticides. Neurotoxicology 19:581–590

    CAS  PubMed  Google Scholar 

  • Shafer TJ, Meyer DA, Crofton KM (2005) Developmental neurotoxicity of pyrethroid insecticides: critical review and future research needs. Environ Health Perspect 113:123–136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shukla Y, Yadav A, Arora A (2002) Carcinogenic and cocarcinogenic potential of cypermethrin on mouse skin. Cancer Lett 182:33–41

    Article  CAS  PubMed  Google Scholar 

  • Singh BK, Walker A, Morgan JA, Wright DJ (2004) Biodegradation of chlorpyrifos by Enterobacter strain B-14 and its use in bioremediation of contaminated soils. Appl Environ Microbiol 70:4855–4863

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Soderlund DM, Clark JM, Sheets LP, Mullin LS, Piccirillo VJ, Sargent D, Stevens JT, Weiner ML (2002) Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology 171:3–59

    Article  CAS  PubMed  Google Scholar 

  • Tallur PN, Megadi VB, Ninnekar HZ (2008) Biodegradation of cypermethrin by Micrococcus sp. strain CPN 1. Biodegradation 28:77–82

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Vidhya R, Thatheyus AJ (2013) Biodegradation of dimethylformamide using Bacillus subtilis. Am Microbiol Res 1:10–15

    Article  Google Scholar 

  • Wang BZ, Guo P, Hang BJ, Li L, He J, Li SP (2009) Cloning of a novel pyrethroid-hydrolyzing carboxylesterase gene from Sphingobium sp. strain JZ-1 and characterization of the gene product. Appl Environ Microbiol 75:5496–5500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang BZ, Ma Y, Zhou WY, Zheng JW, He J (2011) Biodegradation of synthetic pyrethroids by Ochrobactrum tritici strain pyd-1. World J Microbiol Biotechnol 27:2315–2324

    Article  CAS  Google Scholar 

  • Weston DP, Lydy MJ (2010) Urban and agricultural sources of pyrethroid insecticides to the Sacramento-San Joaquin Delta of California. Environ Sci Technol 44:1833–1840

    Article  CAS  PubMed  Google Scholar 

  • Yuan C, Wang C, Gao SQ, Kong TT, Chen L, Li XF, Song L, Wang YB (2010) Effects of permethrin, cypermethrin and 3-phenoxybenzoic acid on rat sperm motility in vitro evaluated with computer-assisted sperm analysis. Toxicol in Vitro 24:382–386

    Article  CAS  PubMed  Google Scholar 

  • Zhai Y, Li K, Song JL, Shi YH (2012) Molecular cloning, purification and biochemical characterization of a novel pyrethroid-hydrolyzing carboxylesterase gene from Ochrobactrum anthropi YZ-1. J Hazard Mater 221–222:206–212

    Article  PubMed  Google Scholar 

  • Zhang L, Gao XW, Liang P (2007) Beta-cypermethrin resistance associated with high arboxylesterase activities in a strain of house fly, Musca domestica (Diptera: Muscidae). Pestic Biochem Phys 89:65–72

    Article  CAS  Google Scholar 

  • Zhang C, Jia L, Wang SH, Qu J, Xu LL, Shi HH, Yan YC (2010) Biodegradation of beta-cypermethrin by two Serratia spp. with different cell surface hydrophobicity. Bioresour Technol 101:3423–3429

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Wang SH, Yan YC (2011) Isomerization and biodegradation of beta-cypermethrin by Pseudomonas aeruginosa CH7 with biosurfactant production. Bioresour Technol 102:7139–7146

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Jingjing Liu for her kind help. The study was funded by the National Natural Science Foundation (30871660 and 31371960), P.R. China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meiying Hu or Guohua Zhong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 364 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Chen, S., Gao, Y. et al. Isolation of a novel beta-cypermethrin degrading strain Bacillus subtilis BSF01 and its biodegradation pathway. Appl Microbiol Biotechnol 99, 2849–2859 (2015). https://doi.org/10.1007/s00253-014-6164-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6164-y

Keywords

Navigation