Skip to main content
Log in

Elevated level of the second messenger c-di-GMP in Comamonas testosteroni enhances biofilm formation and biofilm-based biodegradation of 3-chloroaniline

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) is a ubiquitous second messenger that determines bacterial lifestyle between the planktonic and biofilm modes of life. Although the role of c-di-GMP signaling in biofilm development and dispersal has been extensively studied, how c-di-GMP signaling influences environmental bioprocess activities such as biodegradation remains unexplored. To elucidate the impacts of elevating c-di-GMP level on environmental bioprocesses, we constructed a Comamonas testosteroni strain constitutively expressing a c-di-GMP synthase YedQ from Escherichia coli and examined its capability in biofilm formation and biodegradation of 3-chloroaniline (3-CA). The high c-di-GMP strain exhibited an increased binding to Congo red dye, a decreased motility, and an enhanced biofilm formation capability. In planktonic cultures, the strain with an elevated c-di-GMP concentration and the wild type could degrade 3-CA comparably well. However, under batch growth conditions with a high surface to volume ratio, an elevated c-di-GMP concentration in C. testosteroni significantly increased the contribution of biofilms in 3-CA biodegradation. In continuous submerged biofilm reactors, C. testosteroni with an elevated c-di-GMP level exhibited an enhanced 3-CA biodegradation and a decreased cell detachment rate. Taken together, this study provides a novel strategy to enhance biofilm-based biodegradation of toxic xenobiotic compounds through manipulating bacterial c-di-GMP signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersson S, Kuttuva Rajarao G, Land CJ, Dalhammar G (2008) Biofilm formation and interactions of bacterial strains found in wastewater treatment systems. FEMS Microbiol Lett 283(1):83–90

    Article  CAS  PubMed  Google Scholar 

  • Ariesyady HD, Ito T, Okabe S (2007) Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. Water Res 41(7):1554–1568

    Article  CAS  PubMed  Google Scholar 

  • Boon N, Goris J, De Vos P, Verstraete W, Top EM (2000) Bioaugmentation of activated sludge by an indigenous 3-chloroaniline-degrading Comamonas testosteroni strain, I2gfp. Appl Environ Microbiol 66(7):2906–2913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boon N, De Gelder L, Lievens H, Siciliano SD, Top EM, Verstraete W (2002) Bioaugmenting bioreactors for the continuous removal of 3-chloroaniline by a slow release approach. Environ Sci Technol 36(21):4698–4704

    Article  CAS  PubMed  Google Scholar 

  • Boon N, Top EM, Verstraete W, Siciliano SD (2003) Bioaugmentation as a tool to protect the structure and function of an activated-sludge microbial community against a 3-chloroaniline shock load. Appl Environ Microbiol 69(3):1511–1520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bossier P, Verstraete W (1996) Comamonas testosteroni colony phenotype influences exopolysaccharide production and coaggregation with yeast cells. Appl Environ Microbiol 62(8):2687–2691

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cao B, Loh KC (2008) Catabolic pathways and cellular responses of Pseudomonas putida P8 during growth on benzoate with a proteomics approach. Biotechnol Bioeng 101(6):1297–1312

    Article  CAS  PubMed  Google Scholar 

  • Cao B, Nagarajan K, Loh K (2009) Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbiol Biotechnol 85(2):207–228

  • Cao B, Majors PD, Ahmed B, Renslow RS, Silvia CP, Shi L, Kjelleberg S, Fredrickson JK, Beyenal H (2012) Biofilm shows spatially stratified metabolic responses to contaminant exposure. Environ Microbiol 14(11):2901–2910

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen CY, Nace GW, Irwin PL (2003) A 6 × 6 drop plate method for simultaneous colony counting and MPN enumeration of Campylobacter jejuni, Listeria monocytogenes, and Escherichia coli. J Microbiol Methods 55(2):475–479

    Article  CAS  PubMed  Google Scholar 

  • Da Re S, Ghigo J (2006) A CsgD-independent pathway for cellulose production and biofilm formation in Escherichia coli. J Bacteriol 188(8):3073–3087

    Article  PubMed Central  PubMed  Google Scholar 

  • Dejonghe W, Berteloot E, Goris J, Boon N, Crul K, Maertens S, Hofte M, De Vos P, Verstraete W, Top EM (2003) Synergistic degradation of linuron by a bacterial consortium and isolation of a single linuron-degrading Variovorax strain. Appl Environ Microbiol 69(3):1532–1541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ding Y, Peng N, Du Y, Ji L, Cao B (2014) Disruption of putrescine biosynthesis in Shewanella oneidensis enhances biofilm cohesiveness and performance in Cr(VI) immobilization. Appl Environ Microbiol 80(4):1498–1506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8(9):881–890

    Article  PubMed Central  PubMed  Google Scholar 

  • Ducey TF, Vanotti MB, Shriner AD, Szogi AA, Ellison AQ (2010) Characterization of a microbial community capable of nitrification at cold temperature. Bioresour Technol 101(2):491–500

    Article  CAS  PubMed  Google Scholar 

  • Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633

    CAS  PubMed  Google Scholar 

  • Friedman L, Kolter R (2004) Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol Microbiol 51(3):675–690

    Article  CAS  PubMed  Google Scholar 

  • Gjermansen M, Ragas P, Tolker-Nielsen T (2006) Proteins with GGDEF and EAL domains regulate Pseudomonas putida biofilm formation and dispersal. FEMS Microbiol Lett 265(2):215–224

    Article  CAS  PubMed  Google Scholar 

  • Gjermansen M, Nilsson M, Yang L, Tolker-Nielsen T (2010) Characterization of starvation-induced dispersion in Pseudomonas putida biofilms: genetic elements and molecular mechanisms. Mol Microbiol 75(4):815–826

    Article  CAS  PubMed  Google Scholar 

  • Gupta K, Liao J, Petrova OE, Cherny K, Sauer K (2014) Elevated levels of the second messenger c-di-GMP contribute to antimicrobial resistance of Pseudomonas aeruginosa. Mol Microbiol 92(3):488–506

    Article  CAS  PubMed  Google Scholar 

  • Haagensen JA, Hansen SK, Johansen T, Molin S (2002) In situ detection of horizontal transfer of mobile genetic elements. FEMS Microbiol Ecol 42(2):261–268

    Article  CAS  PubMed  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108

    Article  CAS  PubMed  Google Scholar 

  • Hengge R (2009) Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7(4):263–273

    Article  CAS  PubMed  Google Scholar 

  • Henriques ID, Holbrook RD, Kelly RT II, Love NG (2005) The impact of floc size on respiration inhibition by soluble toxicants—a comparative investigation. Water Res 39(12):2559–2568

    Article  CAS  PubMed  Google Scholar 

  • Hickman JW, Tifrea DF, Harwood CS (2005) A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci U S A 102(40):14422–14427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jenal U, Malone J (2006) Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet 40:385–407

    Article  CAS  PubMed  Google Scholar 

  • Juang YC, Adav SS, Lee DJ, Lai JY (2010) Influence of internal biofilm growth on residual permeability loss in aerobic granular membrane bioreactors. Environ Sci Technol 44(4):1267–1273

    Article  CAS  PubMed  Google Scholar 

  • Kearney PC, Kaufman DD (1988) Herbicides: chemistry, degradation, and mode of action, vol 3. CRC Press, New York

  • Kim L, Pagaling E, Zuo YY, Yan T (2014) Impact of substratum surface on microbial community structure and treatment performance in biological aerated filters. Appl Environ Microbiol 80(1):177–183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kirisits MJ, Prost L, Starkey M, Parsek MR (2005) Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 71(8):4809–4821

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Król J, Penrod J, McCaslin H, Rogers L, Yano H, Stancik A, Dejonghe W, Brown C, Parales R, Wuertz S (2012) Role of IncP-1β plasmids pWDL7::rfp and pNB8c in chloroaniline catabolism as determined by genomic and functional analyses. Appl Environ Microbiol 78(3):828–838

    Article  PubMed Central  PubMed  Google Scholar 

  • Kuchma S, Ballok A, Merritt J, Hammond J, Lu W, Rabinowitz J, O’Toole GA (2010) Cyclic-di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa: the pilY1 gene and its impact on surface-associated behaviors. J Bacteriol 192(12):2950–2964

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Linares M, Pruneda-Paz JL, Reyna L, Genti-Raimondi S (2008) Regulation of testosterone degradation in Comamonas testosteroni. J Steroid Biochem Mol Biol 112(1–3):145–150

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Yang H, Huang Z, Zhou P, Liu S-J (2002) Degradation of aniline by newly isolated, extremely aniline-tolerant Delftia sp. AN3. Appl Microbiol Biotechnol 58(5):679–682

    Article  CAS  PubMed  Google Scholar 

  • Louvet J-N, Giammarino C, Potier O, Pons M-N (2010) Adverse effects of erythromycin on the structure and chemistry of activated sludge. Environ Pollut 158(3):688–693

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Xu P, Ren Z (2012) Long-term performance and characterization of microbial desalination cells in treating domestic wastewater. Bioresour Technol 120:187–193

    Article  CAS  PubMed  Google Scholar 

  • Lyons CD, Katz S, Bartha R (1984) Mechanisms and pathways of aniline elimination from aquatic environments. Appl Environ Microbiol 48(3):491–496

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma Y, Zhang Y, Zhang J, Chen D, Zhu Y, Zheng H, Wang S, Jiang C, Zhao G, Liu S (2009) The complete genome of Comamonas testosteroni reveals its genetic adaptations to changing environments. Appl Environ Microbiol 75(21):6812–6819

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mah TFC, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9(1):34–39

    Article  CAS  PubMed  Google Scholar 

  • Murray TS, Kazmierczak BI (2008) Pseudomonas aeruginosa exhibits sliding motility in the absence of type IV pili and flagella. J Bacteriol 190(8):2700–2708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nicastro GG, Kaihami GH, Pereira TO, Meireles DA, Groleau MC, Déziel E, Baldini RL (2014) Cyclic-di-GMP levels affect Pseudomonas aeruginosa fitness in the presence of imipenem. Environ Microbiol 16(5):1321–1333

    Article  CAS  Google Scholar 

  • Nicolella C, van Loosdrecht MCM, Heijnen SJ (2000) Particle-based biofilm reactor technology. Trends Biotechnol 18(7):312–320

    Article  CAS  PubMed  Google Scholar 

  • Parsek MR, Greenberg E (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13(1):27–33

    Article  CAS  PubMed  Google Scholar 

  • Principi P, Villa F, Bernasconi M, Zanardini E (2006) Metal toxicity in municipal wastewater activated sludge investigated by multivariate analysis and in situ hybridization. Water Res 40(1):99–106

    Article  CAS  PubMed  Google Scholar 

  • Pruneda-Paz JL, Linares M, Cabrera JE, Genti-Raimondi S (2004) TeiR, a LuxR-type transcription factor required for testosterone degradation in Comamonas testosteroni. J Bacteriol 186(5):1430–1437

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reardon KF, Mosteller DC, Rogers JDB (2000) Biodegradation kinetics of benzene, toluene, and phenol as single and mixed substrates for Pseudomonas putida F1. Biotechnol Bioeng 69(4):385–400

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Torres V, Hu H, Wood TK (2011) GGDEF proteins YeaI, YedQ, and YfiN reduce early biofilm formation and swimming motility in Escherichia coli. Appl Microbiol Biotechnol 90(2):651–658

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simm R, Morr M, Kader A, Nimtz M, Romling U (2004) GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53(4):1123–1134

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Paul D, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol 14(9):389–397

    Article  CAS  PubMed  Google Scholar 

  • Sivakumar K, Wang VB, Chen X, Bazan GC, Kjelleberg S, Loo SCJ, Cao B (2014) Membrane permeabilization underlies the enhancement of extracellular bioactivity in Shewanella oneidensis by a membrane-spanning conjugated oligoelectrolyte. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-5973-3

    PubMed  Google Scholar 

  • Snaidr J, Amann R, Huber I, Ludwig W, Schleifer K-H (1997) Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microbiol 63(7):2884–2896

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spangler C, Böhm A, Jenal U, Seifert R, Kaever V (2010) A liquid chromatography-coupled tandem mass spectrometry method for quantitation of cyclic di-guanosine monophosphate. J Microbiol Methods 81(3):226–231

    Article  CAS  PubMed  Google Scholar 

  • Spurbeck RR, Tarrien RJ, Mobley HL (2012) Enzymatically active and inactive phosphodiesterases and diguanylate cyclases are involved in regulation of motility or sessility in Escherichia coli CFT073. MBiol 3(5):e00307–e00312

    CAS  Google Scholar 

  • Suja E, Nancharaiah YV, Venugopalan VP (2012) p-Nitrophenol biodegradation by aerobic microbial granules. Appl Biochem Biotechnol 167(6):1569–1577

    Article  CAS  PubMed  Google Scholar 

  • Thangaraj K, Kapley A, Purohit HJ (2008) Characterization of diverse Acinetobacter isolates for utilization of multiple aromatic compounds. Bioresour Technol 99(7):2488–2494

    Article  CAS  PubMed  Google Scholar 

  • Ueda A, Wood TK (2009) Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885). PLoS Pathog 5(6):e1000483

    Article  PubMed Central  PubMed  Google Scholar 

  • Valle A, Bailey MJ, Whiteley AS, Manefield M (2004) N-acyl-l-homoserine lactones (AHLs) affect microbial community composition and function in activated sludge. Environ Microbiol 6(4):424–433

    Article  CAS  PubMed  Google Scholar 

  • Wakimoto N, Nishi J, Sheikh J, Nataro JP, Sarantuya J, Iwashita M, Manago K, Tokuda K, Yoshinaga M, Kawano Y (2004) Quantitative biofilm assay using a microtiter plate to screen for enteroaggregative Escherichia coli. Am J Trop Med Hyg 71(5):687–690

    PubMed  Google Scholar 

  • Wan C, Zhang P, Lee D-J, Yang X, Liu X, Sun S, Pan X (2013) Disintegration of aerobic granules: role of second messenger cyclic di-GMP. Bioresour Technol 146:330–335

    Article  CAS  PubMed  Google Scholar 

  • Willems A, Vos P (2006) Comamonas. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 723–736

    Chapter  Google Scholar 

  • Wolfe AJ, Visick KL (2008) Get the message out: cyclic-Di-GMP regulates multiple levels of flagellum-based motility. J Bacteriol 190(2):463–475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ye L, Shao M, Zhang T, Tong AHY, Lok S (2011) Analysis of the bacterial community in a laboratory-scale nitrification reactor and a wastewater treatment plant by 454-pyrosequencing. Water Res 45(15):4390–4398

    Article  CAS  PubMed  Google Scholar 

  • Yong Y, Zhong J (2013) Regulation of aromatics biodegradation by rhl quorum sensing system through induction of catechol meta-cleavage pathway. Bioresour Technol 136:761–765

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Shao M, Ye L (2011) 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J 6(6):1137–1147

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Ng CK, Cohen Y, Cao B (2014) Cell growth and protein expression of Shewanella oneidensis in biofilms and hydrogel-entrapped cultures. Mol Biosyst 10(5):1035–1042

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The c-di-GMP quantification was carried out with the help of Dr. Peter Imre Benke and Professor Sanjay Swarup in the Metabolomics Laboratory of the Singapore Centre on Environmental Life Sciences Engineering (SCELSE). We thank Dr. Liang Yang for providing the plasmids used in this study. We also thank William Jak Soon Phang and Hari Seshan for their assistance. This research was supported by the National Research Foundation and Ministry of Education Singapore under its Research Centre of Excellence Programme, SCELSE (M4330005.C70) and a Start-up Grant (M4080847.030) from the College of Engineering, Nanyang Technological University, Singapore. The authors thank the Singapore Ministry of Education for providing research scholarship to Yichao Wu (Grant No. MOE2011-T2-2-035, ARC 3/12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Cao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 261 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Ding, Y., Cohen, Y. et al. Elevated level of the second messenger c-di-GMP in Comamonas testosteroni enhances biofilm formation and biofilm-based biodegradation of 3-chloroaniline. Appl Microbiol Biotechnol 99, 1967–1976 (2015). https://doi.org/10.1007/s00253-014-6107-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6107-7

Keywords

Navigation