Skip to main content
Log in

Analysis of the biological activities of Saccharomyces cerevisiae expressing intracellular EGF, extracellular EGF, and tagged EGF in early-weaned rats

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A growing number of studies suggest that epidermal growth factor (EGF) plays an important role in early-weaned animals. The objective of this experiment was to compare the biological activity of intracellularly expressed EGF (IE-EGF), extracellularly expressed EGF (EE-EGF), and tagged EGF (T-EGF) from Saccharomyces cerevisiae (S. cerevisiae) both in vivo and in vitro. Strains of S. cerevisiae expressing IE-EGF, EE-EGF, and T-EGF were designated INVSc1-IE(+), INVSc1-EE(+), and INVSc1-TE(−), respectively. The production performance, intestinal development, physio-biochemical indexes, and immunological function of early-weaned rats were measured in vivo to evaluate the biological activity of IE-EGF, EE-EGF, and T-EGF. In addition, the proliferation of rat enterocyte was also measured in vitro. In the in vivo experiment, the recombinant S. cerevisiae was shown to survive throughout the intestinal tract. The production performance (e.g., body weight) and intestinal development (e.g., mean villous height, crypt depth, total protein, DNA, and RNA) of the rats were significantly enhanced in the INVSc1-IE(+) group compared with the INVSc1-EE(+) and INVSc1-TE(−) groups (P < 0.05). However, the levels of lactate dehydrogenase (LDH), immunoglobulin A (IgA), immunoglobulin M (IgM), and immunoglobulin G (IgG) showed no difference in the INVSc1-IE(+) group compared to the INVSc1-EE(+) and INVSc1-TE(−) groups (P > 0.05), with the only significant difference being found for creatine kinase (CK) (P < 0.05). In the in vitro experiment, the proliferation of enterocyte was significantly stimulated by both IE-EGF and EE-EGF compared with T-EGF (P < 0.05). Herein, IE-EGF is more suitable for application to early-weaned animals compared with EE-EGF and T-EGF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barnard JA, Beauchamp RD, Russell WE, Dubois RN, Coffey RJ (1995) Epidermal growth factor-related peptides and their relevance to gastrointestinal pathophysiology. Gastroenterology 108:564–580

    Article  CAS  PubMed  Google Scholar 

  • Bedford A, Li Z, Li M, Ji S, Liu W, Huai Y, Li J (2012) Epidermal growth factor-expressing Lactococcus lactis enhances growth performance of early-weaned pigs fed diets devoid of blood plasma. J Anim Sci 90:4–6. doi:10.2527/jas.53973

    Article  PubMed  Google Scholar 

  • Bedford A, Huynh E, Fu M, Zhu C, Wey D, de Lange C, Li J (2014) Growth performance of early-weaned pigs is enhanced by feeding epidermal growth factor-expressing Lactococcus lactis fermentation product. J Biotechnol 173:47–52. doi:10.1016/j.jbiotec.2014.01.012

  • Carpenter G, Cohen S (1979) Epidermal growth factor. Annu Rev Biochem 48:193–216. doi:10.1146/annurev.bi.48.070179.001205

    Article  CAS  PubMed  Google Scholar 

  • Chao JC, Liu KY, Chen SH, Fang CL, Tsao CW (2003) Effect of oral epidermal growth factor on mucosal healing in rats with duodenal ulcer. World J Gastroenterol 9:2261–2265

    CAS  PubMed  Google Scholar 

  • Cheung QC, Yuan Z, Dyce PW, Wu D, DeLange K, Li J (2009) Generation of epidermal growth factor-expressing Lactococcus lactis and its enhancement on intestinal development and growth of early-weaned mice. Am J Clin Nutr 89:871–879. doi:10.3945/ajcn.2008.27073

    Article  CAS  PubMed  Google Scholar 

  • Chomczynski P (1993) A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15:532–534

    CAS  PubMed  Google Scholar 

  • Coppella S, Dhujarti P (1990) A mathematical description of recombinant yeast. Biotechnol Bioeng 35:359–374. doi:10.1002/bit.260350405

  • Goldman AS, Atkinson SA, Hanson LA (1987) The effects of human milk on the recipient infant. Plenum, New York

    Google Scholar 

  • Hahn-Hägerdal B, Karhumaa K, Larsson CU, Gorwa-Grauslund M, Görgens J, Van Zyl WH (2005) Role of cultivation media in the development of yeast strains for large scale industrial use. Microb Cell Factories 4:31. doi:10.1186/1475-2859-4-31

  • Hamilton R, Watanabe CK, de Boer HA (1987) Compilation and comparison of the sequence context around the AUG startcodons in Saccharomyces cerevisiae mRNAs. Nucleic Acids Res 15:3581–3593. doi:10.1093/nar/15.8.3581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hartma PA, Hays VW, Baker RO, Neagle LH, Catron DV (1961) Digestive enzyme development in the young pig. J Anim Sci 20:114–123

    Google Scholar 

  • Heo JH, Won HS, Kang HA, Rhee SK, Chung BH (2002) Purification of recombinant human epidermal growth factor secreted from the methylotrophic yeast Hansenula polymorpha. Protein Expr Purif 24:117–122. doi:10.1006/prep.2001.1527

    Article  CAS  PubMed  Google Scholar 

  • Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 291:881–884. doi:10.1126/science.291.5505.881

    Article  CAS  PubMed  Google Scholar 

  • Hooper LV, Midtvedt T, Gordon JI (2002) How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 22:283–307. doi:10.1146/annurev.nutr.22.011602.092259

    Article  CAS  PubMed  Google Scholar 

  • Kelly D, McFadyen M, King TP, Morgan PJ (1992) Characterization and autoradiographic localization of the epidermal growth factor receptor in the jejunum of neonatal and weaned pigs. Reprod Fertil Dev 4:183–191. doi:10.1071/RD9920183

    Article  CAS  PubMed  Google Scholar 

  • Konturek SJ, Dembinski A, Warzecha Z, Brzozowski T, Gregory H (1988) Role of epidermal growth factor in healing of chronic gastroduodenal ulcers in rats. Gastroenterology 94:1300–1307

    CAS  PubMed  Google Scholar 

  • Lackeyram D, Yang C, Archbold T, Swanson KC (2010) Early weaning reduces small intestinal alkaline phosphatase expression in pigs. J Nutr 140:461–468. doi:10.3945/jn.109.117267

    Article  CAS  PubMed  Google Scholar 

  • Lallès JP, Boudry G, Favier C, Le Floc’h N, Luron I, Montagne L, Sève B (2004) Gut function and dysfunction in young pigs: physiology. Anim Res 53:301–316. doi:10.1051/animres:2004018

    Article  Google Scholar 

  • Lee DL, Kuo TY, Chen MC, Tang TY, Liu FH, Weng CF (2006) Expression of porcine epidermal growth factor in Pichia pastoris and its biology activity in early-weaned piglets. Life Sci 78:649–654. doi:10.1016/j.lfs.2005.05.067

    Article  CAS  PubMed  Google Scholar 

  • Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249–270. doi:10.1002/yea.1208

    Article  CAS  PubMed  Google Scholar 

  • Miettinen PJ, Perheentupa J, Otonkoski T, Lahteenmaki A, Panula P (1989) EGF- and TGF-alpha-like peptides in human fetal gut. Pediatr Res 26:25–30. doi:10.1203/00006450-198907000-00009

    Article  CAS  PubMed  Google Scholar 

  • Moon H, Kim H, Rhee S, Choi ES, Kim IH, Hong SI (2002) Optimal strategy of pH control in the production of recombinant human epidermal growth factor by Hansenula polymorpha. Process Biochem 38:487–495. doi:10.1016/S0032-9592(02)00172-3

    Article  CAS  Google Scholar 

  • Osaki LH, Figueiredo PM, Alvares EP, Gama P (2011) EGFR is involved in control of gastric cell proliferation through activation of MAPK and Src signalling pathways in early-weaned rats. Cell Prolif 44:174–182. doi:10.1111/j.1365-2184.2011.00733.x

    Article  CAS  PubMed  Google Scholar 

  • Pascall JC, Jones DSC, Doel SM, Clements JM, Hunter M, Fallon T, Brown KD (1991) Cloning and characterization of a gene encoding pig epidermal growth factor. J Mol Endocrinol 6:63–70. doi:10.1677/jme.0.0060063

    Article  CAS  PubMed  Google Scholar 

  • Resta-Lenert S, Barrett KE (2003) Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC). Gut 52:988–997. doi:10.1136/gut.52.7.988

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rodrigues M, Blair H, Stockdale L, Griffith L, Wells A (2013) Surface tethered epidermal growth factor protects proliferating and differentiating multipotential stromal cells from FasL-induced apoptosis. Stem Cells 31:104–116. doi:10.1002/stem.1215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Romanos, Scorer A, Clare JJ (1992) Foreign gene expression in yeast: a review. Yeast 8:423–488. doi:10.1002/yea.320080602

    Article  CAS  PubMed  Google Scholar 

  • Servin AL (2004) Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol Rev 28:405–440. doi:10.1016/j.femsre.2004.01.003

  • Tong WY, Yao SJ, Zhu ZQ, Yu J (2001) An improved procedure for production of human epidermal growth factor from recombinant E. coli. Appl Microbiol Biotechnol 57:674–679. doi:10.1007/s002530100793

    Article  CAS  PubMed  Google Scholar 

  • Ulshen MH, Lyn-Cook LE, Raasch RH (1986) Effects of intraluminal epidermal growth factor on mucosal proliferation in the small intestine of adult rats. Gastroenterology 91:1134–1140

    CAS  PubMed  Google Scholar 

  • Valdés J, Mantilla E, Márquez G, Bonilla RM, Lugo VM, Pérez M, Narciandi E (2009) Improving the expression of Human Epidermal Growth Factor in Saccharomyces cerevisiae by manipulating culture conditions. Biotechnol Appl 26:34–38

    Google Scholar 

  • van Beers-Schreurs HMG, Nabuurs MJA, Vellenga L, der Kalsbeek-van VHJ, Wensing T, Breukink HJ (1998) Weaning and the weanling diet influence the villous height and crypt depth in the small intestine of pigs and alter the concentrations of short-chain fatty acids in the large intestine and blood. J Nutr 128:947–953

    PubMed  Google Scholar 

  • Wang Y, Yang GX, Wu BL, Zhang WJ, Huang WH, Peng XF (2007) Expression and characterization of porcine epidermal growth factor in Pichia pastoris. Sci Agric Sin 40:2593–2599

    CAS  Google Scholar 

  • Xian CJ, Shandala T (2012) Roles of EGF family of growth factors in growth: overview of their roles in postnatal growth and development. In: Preedy VR (ed) Handbook of growth and growth monitoring in health and disease. Springer, New York, pp 2857–2870

    Chapter  Google Scholar 

  • Yamagata H, Nakahama K, Suzuki Y, Kakinuma A, Tsukagoshi N, Udaka S (1989) Use of Bacillus brevis for efficient synthesis and secretion of human epidermal growth factor. Proc Natl Acad Sci 86:3589–3593

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zijlstra RT, Odle J, Hall WF, Petschow BW, Gelberg HB, Litov RE (1994) Effect of orally administered epidermal growth factor on intestinal recovery of neonatal pigs infected with rotavirus. J Pediatr Gastroenterol Nutr 19:382–390

Download references

Acknowledgments

We thank the teachers and graduate students at the Key Laboratory of Animal Genetics and Breeding. This study was supported financially by the Ministry of Science and Technology of Sichuan Province (2012NZ0033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhua Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Zhou, L., Chen, H. et al. Analysis of the biological activities of Saccharomyces cerevisiae expressing intracellular EGF, extracellular EGF, and tagged EGF in early-weaned rats. Appl Microbiol Biotechnol 99, 2179–2189 (2015). https://doi.org/10.1007/s00253-014-6044-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6044-5

Keywords

Navigation